
Chapter 26: Bounded Quantification

Polymorphism + subtyping
Foundations of OO

Motivation

• Limitation of Subtyping

f = λx:{a:Nat}. x;
ra = {a=0};
rab = {a=0, b=true};

by passing rab through the
identity function, we have
lost the ability to access
its b field!

Motivation

• Could polymorphism help?

f = λx:{a:Nat}. x;
è fpoly = λX. λx:X. x;

ra = {a=0};
rab = {a=0, b=true};

But what if we have the following function?

f2 = λx:{a:Nat}. {orig=x, asucc=succ(x.a)};

do
abstraction

Motivation

• Solution: Bounded Quantification

kernel F<:

kernel F<:

kernel F<:

kernel F<:

kernel F<:

kernel F<:

Bounded and Unbounded Quantification

• F<: provides only bounded quantification, but it
actually covers unbounded quantification of pure
System F.

Scoping of Type Variables

Whenever we mention a type T in a context,
the free variables of T should be bound in the portion of
the context to the left of where T appears.

Ok
X

X

X

Full F<:

Programming Examples

• Encoding Products

Pair X Y = λR. (X→Y→R) → R

pair = λX. λY. λx:X. λy:Y. λR. λp. p x y

fst = λX. λY. λp. p [X] (λx. λy à x)
snd = λX. λY. λp. p [X] (λx. λy à y)

Programming Examples

• Encoding Records

Programming Examples

• Church Encodings with Subtyping

Programming Examples

• Type Refinement (Subtype)

Safety

Bounded Existential Types

Bounded Existential Types

An Example

We can use this counter ADT exactly as we did before:

We are now permitted to use Counter values directly as numbers:

But we are not able to use numbers as Counters:

