Chapter 29: Type Operators and Kinding

Type-level Functions Kinding $\lambda \omega$

Type Constructor and Type Function

• Type Constructor

Pair Y Z =
$$\forall$$
 X. $(Y \rightarrow Z \rightarrow X) \rightarrow X$;

• Type Function: A map from Types to Types

Pair =
$$\lambda Y$$
. λZ . $\forall X$. $(Y \rightarrow Z \rightarrow X) \rightarrow X$;

Type Constructor and Type Function

 Introducing abstraction and application at the level of types gives us the possibility of writing the same type in different ways.

$$Id = \lambda X.X$$

Then, the following are all equivalent:

Nat \rightarrow Bool Nat \rightarrow Id Bool Id Nat \rightarrow Id Bool Id (Nat \rightarrow Bool)

$$(\lambda X::K_{11}.T_{12}) T2 \equiv [X \rightarrow T_2]T_{12}$$

Kind

 Kinds, "the types of types", are introduced to avoid writing meaningless type expressions such as (Bool Nat)

```
* the kind of proper types (like Bool and Bool→Bool)
*⇒* the kind of type operators (i.e., functions from proper types
to proper types)

*⇒**
the kind of functions from proper types to type operators
(i.e., two-argument operators)
(*⇒*)⇒* the kind of functions from type operators to proper types
```

Pair =
$$\lambda A::^*$$
. $\lambda B::^*$. $\forall X$. $(A \rightarrow B \rightarrow X) \rightarrow X$;

Terms, Types, and Kinds

Proper types: types with kind *

Evaluation

$$t \longrightarrow t^\prime$$

$$\frac{\mathsf{t}_1 \longrightarrow \mathsf{t}_1'}{\mathsf{t}_1 \; \mathsf{t}_2 \longrightarrow \mathsf{t}_1' \; \mathsf{t}_2} \tag{E-APP1}$$

$$\frac{\mathsf{t}_2 \longrightarrow \mathsf{t}_2'}{\mathsf{v}_1 \; \mathsf{t}_2 \longrightarrow \mathsf{v}_1 \; \mathsf{t}_2'} \tag{E-APP2}$$

$$(\lambda x:T_{11}.t_{12}) v_2 \rightarrow [x \mapsto v_2]t_{12} (E-APPABS)$$

Kinding

$$\Gamma \vdash \mathsf{T} :: \mathsf{K}$$

$$\frac{X :: K \in \Gamma}{\Gamma \vdash X :: K}$$

(K-TVAR)

$$\frac{\Gamma, \mathsf{X} \colon \mathsf{K}_1 \vdash \mathsf{T}_2 \ \colon \mathsf{K}_2}{\Gamma \vdash \lambda \mathsf{X} \colon \mathsf{K}_1 \cdot \mathsf{T}_2 \ \colon \mathsf{K}_1 \Rightarrow \mathsf{K}_2}$$

(K-ABS)

$$\frac{\Gamma \vdash \mathsf{T}_1 \ \ \colon \mathsf{K}_{11} \! \Rightarrow \! \mathsf{K}_{12} \qquad \Gamma \vdash \mathsf{T}_2 \ \ \colon \mathsf{K}_{11}}{\Gamma \vdash \mathsf{T}_1 \ \mathsf{T}_2 \ \ \colon \mathsf{K}_{12}} \qquad (K\text{-APP})$$

$$\frac{\Gamma \vdash \mathsf{T}_1 \ \ensuremath{\colon\colon} \ \ \ \ \Gamma \vdash \mathsf{T}_2 \ \ensuremath{\colon\colon} \ \ensuremath{\:\raisebox{1pt}{\star}}}{\Gamma \vdash \mathsf{T}_1 \to \mathsf{T}_2 \ \ensuremath{\colon\colon} \ \ensuremath{\:\raisebox{1pt}{\star}}}$$

(K-Arrow)

Type equivalence

$$\mathsf{T}\equiv\mathsf{T}$$

$$\frac{T \equiv S}{S \equiv T}$$

$$\frac{S \equiv U \qquad U \equiv T}{S \equiv T}$$

$$\frac{\mathsf{S}_1 \equiv \mathsf{T}_1 \qquad \mathsf{S}_2 \equiv \mathsf{T}_2}{\mathsf{S}_1 \!\rightarrow\! \mathsf{S}_2 \equiv \mathsf{T}_1 \!\rightarrow\! \mathsf{T}_2}$$

$$\frac{\mathsf{S}_2 \equiv \mathsf{T}_2}{\lambda \mathsf{X} :: \mathsf{K}_1 . \mathsf{S}_2 \equiv \lambda \mathsf{X} :: \mathsf{K}_1 . \mathsf{T}_2}$$

$$\frac{\mathsf{S}_1 \equiv \mathsf{T}_1 \qquad \mathsf{S}_2 \equiv \mathsf{T}_2}{\mathsf{S}_1 \; \mathsf{S}_2 \equiv \mathsf{T}_1 \; \mathsf{T}_2}$$

$$(\lambda X :: K_{11} . T_{12}) T_2 \equiv [X \mapsto T_2] T_{12} (Q-APPABS)$$

Typing
$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T} \tag{T-VAR}$$

$$\frac{\Gamma\vdash T_1::*\quad \Gamma,x:T_1\vdash t_2:T_2}{\Gamma\vdash \lambda x:T_1.t_2:T_1\to T_2} \tag{T-Abs}$$

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_{11} \rightarrow \mathsf{T}_{12} \qquad \Gamma \vdash \mathsf{t}_2 : \mathsf{T}_{11}}{\Gamma \vdash \mathsf{t}_1 \; \mathsf{t}_2 : \mathsf{T}_{12}} \qquad (\text{T-APP})$$

$$\frac{\Gamma \vdash t : S \qquad S \equiv T \qquad \Gamma \vdash T :: *}{\Gamma \vdash t : T}$$
 (T-Eq)

谢谢大家的课堂配合! 欢迎与北大程序设计语言实验室合作!

