
编程语⾔设计原理
Design Principles of Programming Languages

Haiyan Zhao, Zhenjiang Hu
赵海燕，胡振江

Spring Term, 2022

1

Computer Science = PL Construction ?

• “ . . . the technology for
coping with large-scale
computer systems merges
with the technology for
building new computer
languages, and computer
science itself becomes no
more (and no less) than
the discipline of
constructing appropriate
descriptive languages”

2

Types in PL (CS)

3

Self-Introduction

4

About Me

• 1988: BS, Computer Science, Shanghai Jiaotong Univ.
• 1991: MS, Computer Science, Shanghai Jiaotong Univ.
• 1996: PhD, Information Engineering, Univ. of Tokyo
• 1996: Assistant Professor, Univ. of Tokyo
• 2000: Associate Professor, Univ. of Tokyo
• 2008: Full Professor, National Institute of Informatics
• 2018: Full Professor, Univ. of Tokyo
• 2019: Chair Professor, Peking University

IEEE Fellow, ACM Distinguished Scientist
Member of European Academy
Member of Japanese Engineering Academy

5

胡振江

• 1988:上海交通⼤学计算机系本科毕业
• 1996:日本东京⼤学信息⼯学博⼠学位
• 1997: 日本东京⼤学⼯学部讲师
• 2000:日本东京⼤学⼯学部副教授
• 2008:日本国立信息学研究所教授
• 2018:日本东京⼤学信息科学技术学院教授
• 2019: 北京⼤学计算机系讲席教授

6

日本⼯学会会⼠、ACM杰出科学、IEEE Fellow
日本⼯程院院⼠、欧洲科学院院⼠

Research Interests

• Functional Programming (1985-now)
– Calculating Efficient Functional Programs
– ACM ICFP Steering Committee Co-Chair (2012-2013)

• Algorithmic Languages and Calculi (1992-now)
– Parallel programming and Automatic

Parallelization
– IFIP WG 2.1 Member

• Bidirectional Languages (2003-now)
– Bidirectional languages for system/data

interoperability
– Steering Committee Member of MODELS, ICMT, BX

7

8

Yanyuan Campus：
Rm 1247, Sci. Blg #1

Changping Campus：
Rm 449, CS Blg.

About Prof. Zhao

9

• 2003 : PhD, Univ. of Tokyo
• 2003 - : Associate Professor, Peking Univ.

• Research Interest
– Software engineering
– Requirements Engineering, Requirements reuse in particular
– Model transformations
– Programming Languages

• Contact:
– Office: Rm. 1809, Science Blg #1
– Email： zhhy@sei.pku.edu.cn
– Phone： 62757670

Teaching Assistant

• Xing Zhang (张星）
• Email： 2001111344@stu.pku.edu.cn

10

https://zhenjiang888.github.io/PL/

Course Overview

11

What is this course about?

• Study fundamental (formal) approaches to
describing program behaviors that are both
precise and abstract.

– precise so that we can use mathematical tools to
formalize and check interesting properties

– abstract so that properties of interest can be
discussed clearly, without getting bogged down in
low-level details

12

What you can get out of this course?

• A more sophisticated perspective on programs,
programming languages, and the activity of
programming
– How to view programs and whole languages as

formal, mathematical objects
– How to make and prove rigorous claims about them
– Detailed study of a range of basic language features

• Powerful tools/techniques for language design,
description, and analysis

13

This course is not about …

• An introduction to programming
• A course on compiler
• A course on functional programming
• A course on language paradigms/styles

14

All the above are certainly helpful for your
deep understanding of this course.

What background is required?

• Basic knowledge on
– Discrete mathematics: sets, functions, relations,

orders
– Algorithms: list, tree, graph, stack, queue, heap
– Elementary logics: propositional logic, first-order

logic

• Familiar with a programming language and
basic knowledge of compiler construction

15

Textbook

• Types and Programming Languages
– Benjamin Pierce
– The MIT Press
– 2002-02-01
– ISBN: 9780262162098

16

Let us see how much we can cover in one semester in PKU.

Outline

• Basic operational semantics and proof
techniques

• Untyped Lambda calculus
• Simple typed Lambda calculus
• Simple extensions (basic and derived types)
• References
• Exceptions
• Subtyping
• Recursive types
• Polymorphism
17

Grading

• Activity in class: 20%
• Homework: 40%
• Final (Report/Presentation): 40%

18

设计⼀个带类型系统的程序语⾔，解决实践中的问题，给出基本实现
• 设计⼀个语⾔，保证永远不会发⽣内存/资源泄露。
• 设计⼀个汇编语⾔的类型系统
• 设计⼀个没有停机问题的编程语⾔
• 设计⼀个嵌⼊复杂度表示的类型系统，

保证编写的程序的复杂度不会⾼于类型标示的复杂度。
• 设计⼀个类型系统，使得敏感信息永远不会泄露。
• 设计⼀个类型系统，使得写出的并⾏程序没有竞争问题
• 设计⼀个类型系统，保证所有的浮点计算都满⾜⼀定精度要求
• 解决自⼰研究领域的具体问题

How to study this course?

• Before class: scanning through the chapters to
learn and gain feeling about what will be studied

• In class: trying your best to understand the
contents and raising hands when you have
questions

• After class: doing exercises seriously

19

Chapter 1: Introduction

What is a type system?
What type systems are good for?

Type Systems and Programming Languages

What is a type system (type theory)?

• A type system is a tractable syntactic method
for proving the absence of certain (bad) program
behaviors by classifying phrases according to
the kinds of values they compute.

– Tools for program reasoning
– Classification of terms
– Static approximation
– Proving the absence rather than presence
– Fully automatic (and efficient)

What are type systems good for?

• Detecting Errors
– Many programming errors can be detected early, fixed

intermediately and easily.
• Abstraction

– type systems form the backbone of the module languages: an
interface itself can be viewed as “the type of a module.”

• Documentation
– The type declarations in procedure headers and module interfaces

constitute a form of (checkable) documentation.
• Language Safety

– A safe language is one that protects its own abstractions.
• Efficiency

– Removal of dynamic checking; smart code-generation

Type Systems and Languages Design

• Language design should go hand-in-hand with
type system design.
– Languages without type systems tend to offer

features that make type checking difficult or
infeasible.

– Concrete syntax of typed languages tends to be more
complicated than that of untyped languages, since
type annotations must be taken into account.

In typed languages the type system itself is often taken as
the foundation of the design and the organizing principle
in light of which every other aspect of the design is
considered.

Homework

• Read Chapters 1 and 2.

• Install OCaml and read “Basics”
– http://caml.inria.fr/download.en.html
– http://ocaml.org/learn/tutorials/basics.html

24

