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Chap 18: Case Study: Imperative Objects

Embedding or Formalizing
What is Object-Oriented Programming?

Object / Class
Implementation
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Review

Functional Programming

• Lambda-calculus
• Records
• General recursion
• Mutable references
• Subtyping

What about Other Programming Paradigms?

• Imperative programming
• Object-oriented programming
• Logic programming
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Two Approaches to Defining a Language

Embedding in Lambda-Calculus

• Use lambda-calculus to encode programming idioms
• Can be thought as “syntax sugars”
• This chapter: use lambda-calculus to approximate object-oriented programming

Formalizing from Scratch

• Axiomatize the syntax, evaluation, and typing
• Follow the methodology in this course
• Next chapter: formalize a subset of Java from scratch
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Embedding
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Embedding Imperative Programming
WIKIPEDIA: “Imperative programming uses statements to change a program’s state.”

Remark
Mutable references model state changes in lambda-calculus.

int a = 1; =⇒ let a = ref 1 in
a = a + 1; =⇒ a := !a + 1;
return a; =⇒ !a

Question
What about loops?

while (i < n) {
int c = a + b;
a = b; b = c; i = i + 1;

}
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Embedding Imperative Programming
Remark
Recall general recursion via fix operator with fix f ≡ f (fix f).

Evaluation and Typing Rules of fix

fix (λx:T1.t2) −→ [x 7→ (fix (λx:T1.t2))]t2
E-FIXBETA

t1 −→ t ′1
fix t1 −→ fix t ′1

E-FIX

Γ ` t1 : T1 → T1

Γ ` fix t1 : T1
T-FIX

Question
How to embed loops in lambda-calculus using general recursion?
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Embedding Imperative Programming

while (i < n) {
int c = a + b;
a = b; b = c; i = i + 1;

}

=⇒

loop_gen =
λ loop:(Unit→Unit). λ _:Unit.
if !i < !n then
let c = ref (!a + !b) in
( a := !b ; b := !c ; i := !i + 1 ;
loop unit )

else
unit;

▶ loop_gen : (Unit→Unit)→Unit→Unit;
loop = fix loop_gen;
▶ loop : Unit→Unit;
loop unit;
▶ unit : Unit;

SUMMARY
Lambda-calculus with mutable references and general recursion can encode imperative programming.
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What is Object-Oriented Programming?

Design Principles of Programming Languages, Spring 2023 9



Object-Oriented Programming (OOP)
WIKIPEDIA: “OOP is based on objects, which can contain data (as fields) and code (as methods).”

Example (Points in the Plane)
Consider implementing points as objects.

• Data: the representations of the point, e.g., cartesian form (x,y), polar form (r, θ), etc.
• Code: the operations for the point, e.g., its distance from the origin, its belonging quadrant, etc.

A set of operations (i.e., the interface) can be implemented differently based on the representations, e.g.:

distcart(x,y) def
=

√
x2 + y2

distpol(r, θ)
def
= r

PRINCIPLE (I)
Multiple representations: Same interface can have different implementations.
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Object-Oriented Programming (OOP)

Example (Points in the Plane)
A point’s internal data should be hidden from outside.
Let us implement a function that checks whether a point lies in the unit circle.

is_in_unit_circle(p) def
= (dist(p) < 1)

The function uses the dist method from the interface of points.
Thus, it works for both the cartesian form and the polar form.

PRINCIPLE (II)
Encapsulation: Internal representation is hidden.
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Embedding Objects in Lambda-Calculus
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Objects

Remark
Recall that “object = internal data + interface methods.”
We use mutable references to encode data and records to organize interface.

Example (Counters)
A counter object provides two methods:

• get: return the current counter value.
• inc: increment the counter.

c = let x = ref 1 in
{get = λ _:Unit. !x,
inc = λ _:Unit. x := succ(!x)};

▶ c : {get:Unit→Nat, inc:Unit→Unit}
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Objects

Example (Counters)
Invoke a method of an object = extract a field of its interface record and apply.

c.inc unit;
▶ unit : Unit
c.get unit;
▶ 2 : Nat
(c.inc unit; c.inc unit; c.get unit);
▶ 4 : Nat

For convenience, let us define Counter = {get:Unit→Nat, inc:Unit→Unit}.

Question (In-Class Exercise)
Can you define inc3 : Counter→Unit that increments a counter three times?
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Objects
Question
Can we define newCounter that generates a new counter? What should be its type?

newCounter =
λ _:Unit. let x = ref 1 in

{get = λ _:Unit. !x,
inc = λ _:Unit. x := succ(!x)};

▶ newCounter : Unit→Counter

Question
Can we change the internal representation of the counters?

c = let r = {x=ref 1} in
{get = λ _:Unit. !(r.x),
inc = λ _:Unit. r.x := succ(!(r.x))};

▶ c : Counter
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Object-Oriented Programming (OOP)

SUMMARY
OOP principles so far:

I Multiple representations: same interface can have different implementations.
II Encapsulation: internal representation is hidden.

Question
Is that all?
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What is Object-Oriented Programming?
(cont.)
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Code Reusing
Remark
OOP is good at code reusing: objects of different representations can be manipulated by the same code.
c = let x = ref 1 in

{get = λ _:Unit. !x,
inc = λ _:Unit. x := succ(!x)};

▶ c : Counter
inc3 c;
▶ unit : Unit

c = let r = {x=ref 1} in
{get = λ _:Unit. !(r.x),
inc = λ _:Unit. r.x := succ(!(r.x))};

▶ c : Counter
inc3 c;
▶ unit : Unit

Question
Given a function inc3 : Counter→Unit, can it be applied to values of other types?

Remark
We can use subtyping, i.e., if d : T for some T <: Counter, the term inc3 d is well-typed.
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Subtyping
PRINCIPLE (III)
Subtyping: Object-interface subtyping enables cross-interface code reusing.

Example (Counters)
Consider counters that can be reset:

ResetCounter = {get:Unit→Nat, inc:Unit→Unit, reset:Unit→Unit};
newResetCounter =

λ _:Unit. let r = {x=ref 1} in
{get = λ _:Unit. !(r.x),
inc = λ _:Unit. r.x := succ(!(r.x)),
reset = λ _:Unit. r.x := 1};

▶ newResetCounter : Unit→ResetCounter
Because ResetCounter <: Counter, we can apply inc3 to reset-counters:

let d = newResetCounter unit in (inc3 d; d.reset unit; inc3 d; d.get unit);
▶ 4 : Nat
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Code Reusing (cont.)
Question
The definitions of newCounter and newResetCounter are almost identical.
Can we describe the common functionality in one place?

PRINCIPLE
A type = a set of classes, each with a distinct internal representation.
Recall that “the type of points = the class with cartesian form + the class with polar form.”

Example (Counters)
CounterRep = {x : Ref Nat};
counterClass =

λ r:CounterRep.
{get = λ _:Unit. !(r.x),
inc = λ _:Unit. r.x := succ(!(r.x))};

▶ counterClass : CounterRep→Counter
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Inheritance

Example (Counters)
We can reuse methods from counterClass to define a new class resetCounterClass:

resetCounterClass =
λ r:CounterRep.

let super = counterClass r in
{get = super.get,
inc = super.inc,
reset = λ _:Unit. r.x := 1};

▶ resetCounterClass : CounterRep→ResetCounter
In other words, resetCounterClass inherits get and inc from counterClass.

PRINCIPLE (IV)
Inheritance: classes provide a mechanism to organize inheritance-based code reusing.
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In-Class Exercise

Question (Exercise 18.6.1)
Write a subclass of resetCounterClasswith an additional method dec that subtracts one from the current
value stored in the counter.

You may test your new class using the fullref checker.
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Adding Instance Variables

Question
How to define a class of “backup counters” whose resetmethod resets their state to whatever value it has when
we last called the method backup, instead of resetting it to a constant value?
BackupCounter = {get:Unit→Nat, inc:Unit→Unit, reset:Unit→Unit, backup:Unit→Unit}

We need an extra instance variable to store the backed-up value:
BackupCounterRep = {x : Ref Nat, b : Ref Nat}

backupCounterClass =
λ r:BackupCounterRep.

let super = resetCounterClass r in
{get = super.get,
inc = super.inc,
reset = λ _:Unit. r.x := !(r.b),
backup = λ _:Unit. r.b := !(r.x)};

▶ backupCounterClass : BackupCounterRep→BackupCounter
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Calling Superclass Methods

Question
When defining a class, can we extend its superclass’s behavior with something extra?

funnyBackupCounterClass =
λ r:BackupCounterRep.

let super = backupCounterClass r in
{get = super.get,
inc = λ _:Unit. (super.backup unit; super.inc unit),
reset = super.reset,
backup = super.backup};

▶ funnyBackupCounterClass : BackupCounterRep→BackupCounter
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Classes with Self

Question
Can we allow the methods of a class to refer to each other?
Suppose that we want to implement counters with a setmethod:

SetCounter = {get:Unit→Nat, set:Nat→Unit, inc:Unit→Unit}
And we want to implement inc in terms of get and set.

setCounterClass =
λ r:CounterRep.

{get = λ _:Unit. !(r.x),
set = λ i:Nat. r.x := i,
inc = λ _:Unit. set (succ (get unit))};

Question
How to resolve such a mutually recursive record of functions?
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Classes with Self

Remark
Recall general recursion via fix operator with fix f ≡ f (fix f).

setCounterClass =
λ r:CounterRep.

fix
(λ self:SetCounter.

{get = λ _:Unit. !(r.x),
set = λ i:Nat. r.x := i,
inc = λ _:Unit. self.set (succ (self.get unit))});

▶ setCounterClass : CounterRep→SetCounter
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Object-Oriented Programming (OOP)

SUMMARY
OOP principles so far:

I Multiple representations: same interface can have different implementations.
II Encapsulation: internal representation is hidden.

III Subtyping: Object-interface subtyping enables cross-interface code reusing.
IV Inheritance: classes provide a mechanism to organize inheritance-based code reusing.

Question
Is that all?
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What is Object-Oriented Programming?
(cont. again)
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Dynamic Dispatch

Example (Counters)
We sometimes want to allow the methods of a superclass to call the methods of a subclass.

InstrCounter = {get:Unit→Nat, set:Nat→Unit, inc:Unit→Unit, accesses:Unit→Nat};
InstrCounterRep = {x : Ref Nat, a : Ref Nat};
instrCounterClass =

λ r:InstrCounterRep.
fix
(λ self:InstrCounter.

let super = setCounterClass r in
{get = super.get,
set = λ i:Nat. (r.a := succ(!(r.a)); super.set i),
inc = super.inc,
accesses = λ _:Unit. !(r.a)});

▶ instrCounterClass : InstrCounterRep→InstrCounter
However, the incmethod from the superclass will not call the setmethod of the subclass.
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Late Binding of Self
PRINCIPLE (V)
Open recursion: self gets bound during object creation instead of class definition.

Example (Counters)
In the definition of setCounterClass, we make self a parameter:

setCounterClass =
λ r:CounterRep.

λ self:SetCounter.
{get = λ _:Unit. !(r.x),
set = λ i:Nat. r.x := i,
inc = λ _:Unit. self.set (succ (self.get unit))};

▶ setCounterClass : CounterRep→SetCounter→SetCounter

newSetCounter =
λ _:Unit. let r = {x=ref 1} in fix (setCounterClass r);

▶ newSetCounter : Unit→SetCounter
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Late Binding of Self

Example (Counters)
instrCounterClass =

λ r:InstrCounterRep.
λ self:InstrCounter.

let super = setCounterClass r self in
{get = super.get,
set = λ i:Nat. (r.a := succ(!(r.a)); super.set i),
inc = super.inc,
accesses = λ _:Unit. !(r.a)};

▶ instrCounterClass : InstrCounterRep→InstrCounter→InstrCounter

newInstrCounter =
λ _:Unit. let r = {x=ref 1, a=ref 0} in fix (instrCounterClass r);

▶ newInstrCounter : Unit→InstrCounter

Does it really work?
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newInstrCounter unit
−→∗ let r = {x=ref 1, a= ref 0} in fix (instrCounterClass r)
−→∗ fix (instrCounterClass <ifields>)
−→∗ fix (λ self:InstrCounter. let super = setCounterClass <ifields> self in <imethods>)
−→∗ let super = setCounterClass <ifields> (fix <f>) in <imethods>
−→∗ let super = (λ self:SetCounter. <smethods>) (fix <f>) in <imethods>
−→∗ let super = (λ self:SetCounter. <smethods>)

(let super = setCounterClass <ifields> (fix <f>) in <imethods>)
in <imethods>

−→∗ …

Problem
In the call-by-value evaluation order, the derivation above will infinitely unroll (fix <f>).

Solution
Use dummy lambda abstractions to control the evaluation order.
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Late Binding of Self, Correctly

Example (Counters)
setCounterClass =

λ r:CounterRep.
λ self:Unit→SetCounter. λ _:Unit.

{get = λ _:Unit. !(r.x),
set = λ i:Nat. r.x := i,
inc = λ _:Unit. (self unit).set (succ ((self unit).get unit))};

▶ setCounterClass : CounterRep→(Unit→SetCounter)→Unit→SetCounter

newSetCounter =
λ _:Unit. let r = {x=ref 1} in fix (setCounterClass r) unit;

▶ newSetCounter : Unit→SetCounter
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Late Binding of Self, Correctly

Example (Counters)
instrCounterClass =

λ r:InstrCounterRep.
λ self:Unit→InstrCounter. λ _:Unit.

let super = setCounterClass r self unit in
{get = super.get,
set = λ i:Nat. (r.a := succ(!(r.a)); super.set i),
inc = super.inc,
accesses = λ _:Unit. !(r.a)};

▶ instrCounterClass : InstrCounterRep→(Unit→InstrCounter)→Unit→InstrCounter

newInstrCounter =
λ _:Unit. let r = {x=ref 1, a=ref 0} in fix (instrCounterClass r) unit;

▶ newInstrCounter : Unit→InstrCounter
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Object-Oriented Programming (OOP)
SUMMARY
OOP principles:

I Multiple representations: same interface can have different implementations.
II Encapsulation: internal representation is hidden.

III Subtyping: Object-interface subtyping enables cross-interface reusing.
IV Inheritance: classes provide a mechanism to organize inheritance-based code reusing.
V Open recursion: self gets bound during object creation instead of class definition.

Aside (Efficiency)
Instead of computing the “method table” just once when an object is created, we will re-compute it every time we
invoke a method!
Section 18.12 in the book shows how this can be repaired by using mutable references instead of fix to “tie the
knot” in the method table.
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