
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang
赵海燕，王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 2023 1

Chap 18: Case Study: Imperative Objects

Embedding or Formalizing
What is Object-Oriented Programming?

Object / Class
Implementation

Design Principles of Programming Languages, Spring 2023 2

Review

Functional Programming

• Lambda-calculus
• Records
• General recursion
• Mutable references
• Subtyping

What about Other Programming Paradigms?

• Imperative programming
• Object-oriented programming
• Logic programming

Design Principles of Programming Languages, Spring 2023 3

Two Approaches to Defining a Language

Embedding in Lambda-Calculus

• Use lambda-calculus to encode programming idioms
• Can be thought as “syntax sugars”
• This chapter: use lambda-calculus to approximate object-oriented programming

Formalizing from Scratch

• Axiomatize the syntax, evaluation, and typing
• Follow the methodology in this course
• Next chapter: formalize a subset of Java from scratch

Design Principles of Programming Languages, Spring 2023 4

Embedding

Design Principles of Programming Languages, Spring 2023 5

Embedding Imperative Programming
WIKIPEDIA: “Imperative programming uses statements to change a program’s state.”

Remark
Mutable references model state changes in lambda-calculus.

int a = 1; =⇒ let a = ref 1 in
a = a + 1; =⇒ a := !a + 1;
return a; =⇒ !a

Question
What about loops?

while (i < n) {
int c = a + b;
a = b; b = c; i = i + 1;

}
Design Principles of Programming Languages, Spring 2023 6

Embedding Imperative Programming
Remark
Recall general recursion via fix operator with fix f ≡ f (fix f).

Evaluation and Typing Rules of fix

fix (λx:T1.t2) −→ [x 7→ (fix (λx:T1.t2))]t2
E-FIXBETA

t1 −→ t ′1
fix t1 −→ fix t ′1

E-FIX

Γ ` t1 : T1 → T1

Γ ` fix t1 : T1
T-FIX

Question
How to embed loops in lambda-calculus using general recursion?
Design Principles of Programming Languages, Spring 2023 7

Embedding Imperative Programming

while (i < n) {
int c = a + b;
a = b; b = c; i = i + 1;

}

=⇒

loop_gen =
λ loop:(Unit→Unit). λ _:Unit.
if !i < !n then
let c = ref (!a + !b) in
(a := !b ; b := !c ; i := !i + 1 ;
loop unit)

else
unit;

▶ loop_gen : (Unit→Unit)→Unit→Unit;
loop = fix loop_gen;
▶ loop : Unit→Unit;
loop unit;
▶ unit : Unit;

SUMMARY
Lambda-calculus with mutable references and general recursion can encode imperative programming.

Design Principles of Programming Languages, Spring 2023 8

What is Object-Oriented Programming?

Design Principles of Programming Languages, Spring 2023 9

Object-Oriented Programming (OOP)
WIKIPEDIA: “OOP is based on objects, which can contain data (as fields) and code (as methods).”

Example (Points in the Plane)
Consider implementing points as objects.

• Data: the representations of the point, e.g., cartesian form (x,y), polar form (r, θ), etc.
• Code: the operations for the point, e.g., its distance from the origin, its belonging quadrant, etc.

A set of operations (i.e., the interface) can be implemented differently based on the representations, e.g.:

distcart(x,y) def
=

√
x2 + y2

distpol(r, θ)
def
= r

PRINCIPLE (I)
Multiple representations: Same interface can have different implementations.

Design Principles of Programming Languages, Spring 2023 10

Object-Oriented Programming (OOP)

Example (Points in the Plane)
A point’s internal data should be hidden from outside.
Let us implement a function that checks whether a point lies in the unit circle.

is_in_unit_circle(p) def
= (dist(p) < 1)

The function uses the dist method from the interface of points.
Thus, it works for both the cartesian form and the polar form.

PRINCIPLE (II)
Encapsulation: Internal representation is hidden.

Design Principles of Programming Languages, Spring 2023 11

Embedding Objects in Lambda-Calculus

Design Principles of Programming Languages, Spring 2023 12

Objects

Remark
Recall that “object = internal data + interface methods.”
We use mutable references to encode data and records to organize interface.

Example (Counters)
A counter object provides two methods:

• get: return the current counter value.
• inc: increment the counter.

c = let x = ref 1 in
{get = λ _:Unit. !x,
inc = λ _:Unit. x := succ(!x)};

▶ c : {get:Unit→Nat, inc:Unit→Unit}

Design Principles of Programming Languages, Spring 2023 13

Objects

Example (Counters)
Invoke a method of an object = extract a field of its interface record and apply.

c.inc unit;
▶ unit : Unit
c.get unit;
▶ 2 : Nat
(c.inc unit; c.inc unit; c.get unit);
▶ 4 : Nat

For convenience, let us define Counter = {get:Unit→Nat, inc:Unit→Unit}.

Question (In-Class Exercise)
Can you define inc3 : Counter→Unit that increments a counter three times?

Design Principles of Programming Languages, Spring 2023 14

Objects
Question
Can we define newCounter that generates a new counter? What should be its type?

newCounter =
λ _:Unit. let x = ref 1 in

{get = λ _:Unit. !x,
inc = λ _:Unit. x := succ(!x)};

▶ newCounter : Unit→Counter

Question
Can we change the internal representation of the counters?

c = let r = {x=ref 1} in
{get = λ _:Unit. !(r.x),
inc = λ _:Unit. r.x := succ(!(r.x))};

▶ c : Counter
Design Principles of Programming Languages, Spring 2023 15

Object-Oriented Programming (OOP)

SUMMARY
OOP principles so far:

I Multiple representations: same interface can have different implementations.
II Encapsulation: internal representation is hidden.

Question
Is that all?

Design Principles of Programming Languages, Spring 2023 16

What is Object-Oriented Programming?
(cont.)

Design Principles of Programming Languages, Spring 2023 17

Code Reusing
Remark
OOP is good at code reusing: objects of different representations can be manipulated by the same code.
c = let x = ref 1 in

{get = λ _:Unit. !x,
inc = λ _:Unit. x := succ(!x)};

▶ c : Counter
inc3 c;
▶ unit : Unit

c = let r = {x=ref 1} in
{get = λ _:Unit. !(r.x),
inc = λ _:Unit. r.x := succ(!(r.x))};

▶ c : Counter
inc3 c;
▶ unit : Unit

Question
Given a function inc3 : Counter→Unit, can it be applied to values of other types?

Remark
We can use subtyping, i.e., if d : T for some T <: Counter, the term inc3 d is well-typed.
Design Principles of Programming Languages, Spring 2023 18

Subtyping
PRINCIPLE (III)
Subtyping: Object-interface subtyping enables cross-interface code reusing.

Example (Counters)
Consider counters that can be reset:

ResetCounter = {get:Unit→Nat, inc:Unit→Unit, reset:Unit→Unit};
newResetCounter =

λ _:Unit. let r = {x=ref 1} in
{get = λ _:Unit. !(r.x),
inc = λ _:Unit. r.x := succ(!(r.x)),
reset = λ _:Unit. r.x := 1};

▶ newResetCounter : Unit→ResetCounter
Because ResetCounter <: Counter, we can apply inc3 to reset-counters:

let d = newResetCounter unit in (inc3 d; d.reset unit; inc3 d; d.get unit);
▶ 4 : Nat

Design Principles of Programming Languages, Spring 2023 19

Code Reusing (cont.)
Question
The definitions of newCounter and newResetCounter are almost identical.
Can we describe the common functionality in one place?

PRINCIPLE
A type = a set of classes, each with a distinct internal representation.
Recall that “the type of points = the class with cartesian form + the class with polar form.”

Example (Counters)
CounterRep = {x : Ref Nat};
counterClass =

λ r:CounterRep.
{get = λ _:Unit. !(r.x),
inc = λ _:Unit. r.x := succ(!(r.x))};

▶ counterClass : CounterRep→Counter
Design Principles of Programming Languages, Spring 2023 20

Inheritance

Example (Counters)
We can reuse methods from counterClass to define a new class resetCounterClass:

resetCounterClass =
λ r:CounterRep.

let super = counterClass r in
{get = super.get,
inc = super.inc,
reset = λ _:Unit. r.x := 1};

▶ resetCounterClass : CounterRep→ResetCounter
In other words, resetCounterClass inherits get and inc from counterClass.

PRINCIPLE (IV)
Inheritance: classes provide a mechanism to organize inheritance-based code reusing.

Design Principles of Programming Languages, Spring 2023 21

In-Class Exercise

Question (Exercise 18.6.1)
Write a subclass of resetCounterClasswith an additional method dec that subtracts one from the current
value stored in the counter.

You may test your new class using the fullref checker.

Design Principles of Programming Languages, Spring 2023 22

Adding Instance Variables

Question
How to define a class of “backup counters” whose resetmethod resets their state to whatever value it has when
we last called the method backup, instead of resetting it to a constant value?
BackupCounter = {get:Unit→Nat, inc:Unit→Unit, reset:Unit→Unit, backup:Unit→Unit}

We need an extra instance variable to store the backed-up value:
BackupCounterRep = {x : Ref Nat, b : Ref Nat}

backupCounterClass =
λ r:BackupCounterRep.

let super = resetCounterClass r in
{get = super.get,
inc = super.inc,
reset = λ _:Unit. r.x := !(r.b),
backup = λ _:Unit. r.b := !(r.x)};

▶ backupCounterClass : BackupCounterRep→BackupCounter
Design Principles of Programming Languages, Spring 2023 23

Calling Superclass Methods

Question
When defining a class, can we extend its superclass’s behavior with something extra?

funnyBackupCounterClass =
λ r:BackupCounterRep.

let super = backupCounterClass r in
{get = super.get,
inc = λ _:Unit. (super.backup unit; super.inc unit),
reset = super.reset,
backup = super.backup};

▶ funnyBackupCounterClass : BackupCounterRep→BackupCounter

Design Principles of Programming Languages, Spring 2023 24

Classes with Self

Question
Can we allow the methods of a class to refer to each other?
Suppose that we want to implement counters with a setmethod:

SetCounter = {get:Unit→Nat, set:Nat→Unit, inc:Unit→Unit}
And we want to implement inc in terms of get and set.

setCounterClass =
λ r:CounterRep.

{get = λ _:Unit. !(r.x),
set = λ i:Nat. r.x := i,
inc = λ _:Unit. set (succ (get unit))};

Question
How to resolve such a mutually recursive record of functions?

Design Principles of Programming Languages, Spring 2023 25

Classes with Self

Remark
Recall general recursion via fix operator with fix f ≡ f (fix f).

setCounterClass =
λ r:CounterRep.

fix
(λ self:SetCounter.

{get = λ _:Unit. !(r.x),
set = λ i:Nat. r.x := i,
inc = λ _:Unit. self.set (succ (self.get unit))});

▶ setCounterClass : CounterRep→SetCounter

Design Principles of Programming Languages, Spring 2023 26

Object-Oriented Programming (OOP)

SUMMARY
OOP principles so far:

I Multiple representations: same interface can have different implementations.
II Encapsulation: internal representation is hidden.

III Subtyping: Object-interface subtyping enables cross-interface code reusing.
IV Inheritance: classes provide a mechanism to organize inheritance-based code reusing.

Question
Is that all?

Design Principles of Programming Languages, Spring 2023 27

What is Object-Oriented Programming?
(cont. again)

Design Principles of Programming Languages, Spring 2023 28

Dynamic Dispatch

Example (Counters)
We sometimes want to allow the methods of a superclass to call the methods of a subclass.

InstrCounter = {get:Unit→Nat, set:Nat→Unit, inc:Unit→Unit, accesses:Unit→Nat};
InstrCounterRep = {x : Ref Nat, a : Ref Nat};
instrCounterClass =

λ r:InstrCounterRep.
fix
(λ self:InstrCounter.

let super = setCounterClass r in
{get = super.get,
set = λ i:Nat. (r.a := succ(!(r.a)); super.set i),
inc = super.inc,
accesses = λ _:Unit. !(r.a)});

▶ instrCounterClass : InstrCounterRep→InstrCounter
However, the incmethod from the superclass will not call the setmethod of the subclass.

Design Principles of Programming Languages, Spring 2023 29

Late Binding of Self
PRINCIPLE (V)
Open recursion: self gets bound during object creation instead of class definition.

Example (Counters)
In the definition of setCounterClass, we make self a parameter:

setCounterClass =
λ r:CounterRep.

λ self:SetCounter.
{get = λ _:Unit. !(r.x),
set = λ i:Nat. r.x := i,
inc = λ _:Unit. self.set (succ (self.get unit))};

▶ setCounterClass : CounterRep→SetCounter→SetCounter

newSetCounter =
λ _:Unit. let r = {x=ref 1} in fix (setCounterClass r);

▶ newSetCounter : Unit→SetCounter
Design Principles of Programming Languages, Spring 2023 30

Late Binding of Self

Example (Counters)
instrCounterClass =

λ r:InstrCounterRep.
λ self:InstrCounter.

let super = setCounterClass r self in
{get = super.get,
set = λ i:Nat. (r.a := succ(!(r.a)); super.set i),
inc = super.inc,
accesses = λ _:Unit. !(r.a)};

▶ instrCounterClass : InstrCounterRep→InstrCounter→InstrCounter

newInstrCounter =
λ _:Unit. let r = {x=ref 1, a=ref 0} in fix (instrCounterClass r);

▶ newInstrCounter : Unit→InstrCounter

Does it really work?
Design Principles of Programming Languages, Spring 2023 31

newInstrCounter unit
−→∗ let r = {x=ref 1, a= ref 0} in fix (instrCounterClass r)
−→∗ fix (instrCounterClass <ifields>)
−→∗ fix (λ self:InstrCounter. let super = setCounterClass <ifields> self in <imethods>)
−→∗ let super = setCounterClass <ifields> (fix <f>) in <imethods>
−→∗ let super = (λ self:SetCounter. <smethods>) (fix <f>) in <imethods>
−→∗ let super = (λ self:SetCounter. <smethods>)

(let super = setCounterClass <ifields> (fix <f>) in <imethods>)
in <imethods>

−→∗ …

Problem
In the call-by-value evaluation order, the derivation above will infinitely unroll (fix <f>).

Solution
Use dummy lambda abstractions to control the evaluation order.

Design Principles of Programming Languages, Spring 2023 32

Late Binding of Self, Correctly

Example (Counters)
setCounterClass =

λ r:CounterRep.
λ self:Unit→SetCounter. λ _:Unit.

{get = λ _:Unit. !(r.x),
set = λ i:Nat. r.x := i,
inc = λ _:Unit. (self unit).set (succ ((self unit).get unit))};

▶ setCounterClass : CounterRep→(Unit→SetCounter)→Unit→SetCounter

newSetCounter =
λ _:Unit. let r = {x=ref 1} in fix (setCounterClass r) unit;

▶ newSetCounter : Unit→SetCounter

Design Principles of Programming Languages, Spring 2023 33

Late Binding of Self, Correctly

Example (Counters)
instrCounterClass =

λ r:InstrCounterRep.
λ self:Unit→InstrCounter. λ _:Unit.

let super = setCounterClass r self unit in
{get = super.get,
set = λ i:Nat. (r.a := succ(!(r.a)); super.set i),
inc = super.inc,
accesses = λ _:Unit. !(r.a)};

▶ instrCounterClass : InstrCounterRep→(Unit→InstrCounter)→Unit→InstrCounter

newInstrCounter =
λ _:Unit. let r = {x=ref 1, a=ref 0} in fix (instrCounterClass r) unit;

▶ newInstrCounter : Unit→InstrCounter

Design Principles of Programming Languages, Spring 2023 34

Object-Oriented Programming (OOP)
SUMMARY
OOP principles:

I Multiple representations: same interface can have different implementations.
II Encapsulation: internal representation is hidden.

III Subtyping: Object-interface subtyping enables cross-interface reusing.
IV Inheritance: classes provide a mechanism to organize inheritance-based code reusing.
V Open recursion: self gets bound during object creation instead of class definition.

Aside (Efficiency)
Instead of computing the “method table” just once when an object is created, we will re-compute it every time we
invoke a method!
Section 18.12 in the book shows how this can be repaired by using mutable references instead of fix to “tie the
knot” in the method table.

Design Principles of Programming Languages, Spring 2023 35

