
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang
赵海燕，王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 2023 1

Chap 19: Case Study: Featherweight Java

Completeness or Compactness
Syntax

Evaluation
Typing

Properties

Design Principles of Programming Languages, Spring 2023 2

Review: Object-Oriented Programming (OOP)

SUMMARY
OOP principles:

I Multiple representations: same interface can have different implementations.
II Encapsulation: internal representation is hidden.

III Subtyping: Object-interface subtyping enables cross-interface code reusing.
IV Inheritance: classes provide a mechanism to organize inheritance-based code reusing.
V Open recursion: self gets bound during object creation instead of class definition.

Remark (Two Approaches to Defining a Language)

• Embedding in lambda-calculus (previous chapter)
• Formalizing from scratch (this chapter): treat objects as primitive

Design Principles of Programming Languages, Spring 2023 3

Formalizing

Design Principles of Programming Languages, Spring 2023 4

Completeness or Compactness?
“Inside every language is a small language struggling to get out …”

Formal Modeling

• Describe some aspects precisely.
• Boost the design of real-world artifacts.
• Completeness: address more aspects in the model at the same time.
• Compactness: try to keep the scale of the model as small as possible.

PRINCIPLE (FORMALIZING A LANGUAGE FROM SCRATCH)
We often choose a model that is less complete but more compact.

• Capture the essence as early as possible!
• Extend the model incrementally to improve completeness.

Design Principles of Programming Languages, Spring 2023 5

Featherweight Java (FJ)1

• FJ is a minimal core calculus for modeling Java’s type system.
• The design of FJ favors compactness over completeness.
• The goal in designing FJ is to make its proof of type safety as concise as possible, while still capturing the

essence of the safety argument for the central features of full Java.

FJ has had a large impact on programming-language research.
• Be used directly as a base calculus, e.g., J. Li et al. 2015. SWIN: Towards Type-Safe Java Program Adaptation

between APIs. In Workshop on Partial Evaluation and Program Manipulation (PEPM’15), 91–102. DOI:
10.1145/2678015.2682534.

• Motivate others’ design, e.g., Featherweight Typestate: R. Garcia et al. 2014. Foundations of
Typestate-Oriented Programming. Trans. on Prog. Lang. and Syst., 36, 12, 12:1–12:44, 4. DOI: 10.1145/2629609.

1 A. Igarashi, B. C. Pierce, and P. Wadler. 1999. Featherweight Java: A Minimal Core Calculus for Java and GJ. In Object-Oriented Prog., Syst., Lang., and Applications (OOPSLA’99), 132–146. DOI: 10.1145/320385.320395.
Design Principles of Programming Languages, Spring 2023 6

https://doi.org/10.1145/2678015.2682534
https://doi.org/10.1145/2629609
https://doi.org/10.1145/320385.320395

An Overview of FJ

Design Principles of Programming Languages, Spring 2023 7

An FJ Program is (almost) a Java Program
An FJ program = a set of class definitions + a term to be evaluated.

A Set of Class Definitions

class A extends Object { A() { super(); } }
class B extends Object { B() { super(); } }
class Pair extends Object {
Object fst;
Object snd;
// Constructor:
Pair(Object fst, Object snd) {

super(); this.fst=fst; this.snd=snd; }
// Method definition:
Pair setfst(Object newfst) {
return new Pair(newfst, this.snd); } }

Question
Can we embed those definitions in lambda-calculus as we did in the previous chapter?

Design Principles of Programming Languages, Spring 2023 8

FJ Terms

Five Forms of Terms
• Object constructors: new Pair(...,...)
• Method invocations:setfst(...)
• Field accesses: this.snd
• Variables: newfst, this
• Casts: (Object)new Pair(...,...)

Evaluation
• Everything is an object: values are object creations (v ::= new C(v)).
• No side effects: evaluation is a binary relation on terms (t −→ t ′).

Design Principles of Programming Languages, Spring 2023 9

Examples of FJ Evaluation
new Pair(new A(), new B()).snd −→ new B()

new Pair(new A(), new B()).setfst(new B()) −→
[newfst 7→ new B()

this 7→ new Pair(new A(), new B())

]
new Pair(newfst, this.snd)

= new Pair(new B(), new Pair(new A(), new B()).snd)
−→ new Pair(new B(), new B())

(Object)new Pair(new A(), new B()) −→ new Pair(new A(), new B())

Question
What’s the evaluation result of ((Pair)(new Pair(new Pair(new A(), new B()), new A())).fst).snd?

Question
When does an FJ evaluation get stuck?

Design Principles of Programming Languages, Spring 2023 10

FJ Types
Structural Type Systems
Recall the type names we have seen in the course, e.g., NatPair = {fst:Nat, snd:Nat}.

• What matters about a type (for typing, subtyping, etc.) is just its structure.
• Names are just convenient (but inessential) abbreviations.

Nominal Type Systems
However, here in FJ (as well as Java), type names play a significant role.

• Types are always named.
• Typechecker mostly manipulates names, not structures.
• Subtyping is declared explicitly by the programmer.

Question
Which style is more popular? Why?
Design Principles of Programming Languages, Spring 2023 11

Formalizing FJ

Design Principles of Programming Languages, Spring 2023 12

Syntax
CL ::= class declarations:

class C extends C {C f;K M}

K ::= constructor declarations:
C(C f) {super(f); this.f = f; }

M ::= method declarations:
C m(C x) {return t; }

t ::= terms:
x variable
t.f field access
t.m(t) method invocation
new C(t) object creation
(C)t cast

v ::= values:
new C(v) object creation

Design Principles of Programming Languages, Spring 2023 13

Subtyping

PRINCIPLE
For nominal type systems, we usually work with a global collection of type names and associated definitions.

Let CT (class table) be a mapping from class names C to class definitions CL.

Subtyping (C <: D)

C <: C
C <: D D <: E

C <: E
CT(C) = class C extends D {. . .}

C <: D
We assume CT does not induce cycles in the subtype relation.

Design Principles of Programming Languages, Spring 2023 14

Auxiliary Definitions
PRINCIPLE
Encode each auxiliary function/relation as a system of derivation rules.

Field Lookup (fields(C) = C f)

fields(Object) = •
CT(C) = class C extends D {C f;K M} fields(D) = D g

fields(C) = D g, C f

Method Type Lookup (mtype(m, C) = C → C)

CT(C) = class C extends D {C f;K M}

B m(B x) {. . .} ∈ M

mtype(m, C) = B → B

CT(C) = class C extends D {C f;K M}

m is not defined in M

mtype(m, C) = mtype(m, D)

Design Principles of Programming Languages, Spring 2023 15

Auxiliary Definitions

Method Body Lookup (mbody(m, C) = (x, t))

CT(C) = class C extends D {C f;K M}

B m(B x) {return t; } ∈ M

mbody(m, C) = (x, t)

CT(C) = class C extends D {C f;K M}

m is not defined in M

mbody(m, C) = mbody(m, D)

Valid Method Overriding (override(m, D, C → C0))

mtype(m, D) = D → D0 implies C = D and C0 = D0
override(m, D, C → C0)

Design Principles of Programming Languages, Spring 2023 16

Evaluation (t −→ t ′)

fields(C) = C f
(new C(v)).fi −→ vi

E-PROJNEW
mbody(m, C) = (x, t0)

(new C(v)).m(u) −→ [x 7→ u, this 7→ new C(v)]t0
E-INVKNEW

C <: D
(D)(new C(v)) −→ new C(v) E-CASTNEW

t0 −→ t ′0
t0.f −→ t ′0.f E-FIELD

t0 −→ t ′0
t0.m(t) −→ t ′0.m(t) E-INVK-RECV

ti −→ t ′i
v0.m(v, ti, t) −→ v0.m(v, t ′i, t)

E-INVK-ARG
ti −→ t ′i

new C(v, ti, t) −→ new C(v, t ′i, t)
E-NEW-ARG

t0 −→ t ′0
(C)t0 −→ (C)t ′0

E-CAST

Remark
A run-time cast does not change an object.

Design Principles of Programming Languages, Spring 2023 17

Typing
Term Typing (Γ ` t : C)

x : C ∈ Γ

Γ ` x : C T-VAR
Γ ` t0 : C0 fields(C0) = C f

Γ ` t0.fi : Ci
T-FIELD

Γ ` t0 : C0 mtype(m, C0) = D → C
Γ ` t : C C <: D

Γ ` t0.m(t) : C T-INVK

fields(C) = D f Γ ` t : C C <: D
Γ ` new C(t) : C T-NEW

Γ ` t0 : D D <: C
Γ ` (C)t0 : C T-UCAST

Γ ` t0 : D C <: D C 6= D
Γ ` (C)t0 : C T-DCAST

Γ ` t0 : D C /<:D D /<:C stupid warning
Γ ` (C)t0 : C T-SCAST

Remark (Casts)
There is a stupid-cast rule; its only use is to prove type preservation. Consider the evaluation

(A)(Object)new B() −→ (A)new B()
On the left is an upcast followed by a downcast, but on the right is a stupid cast.

Design Principles of Programming Languages, Spring 2023 18

Typing

Method Typing (M OK in C)

x : C, this : C ` t0 : E0 E0 <: C0 CT(C) = class C extends D {. . .} override(m, D, C → C0)
C0 m(C x) {return t0; } OK in C

Class Typing (C OK)

K = C(D g, C f) {super(g); this.f = f} fields(D) = D g M OK in C
class C extends D {C f;K M} OK

Design Principles of Programming Languages, Spring 2023 19

Properties

THEOREM (PRESERVATION)
If Γ ` t : C and t −→ t ′, then Γ ` t ′ : C ′ for some C ′ <: C.

THEOREM (PROGRESS)
Suppose t is a closed, well-typed normal form. Then either (1) t is a value, or (2) for some evaluation context E, we
can express t as t = E[(C)(new D(v))], with D /<:C.

A evaluation context is basically a term with a hole (written []):

E ::= [] | E.f | E.m(t) | v.m(v,E, t) | new C(v,E, t) | (C)E
We write E[t] for the ordinary term obtained by replacing the hole in E with t.

Design Principles of Programming Languages, Spring 2023 20

Review: Object-Oriented Programming (OOP)

SUMMARY
OOP principles:

I Multiple representations: same interface can have different implementations.
II Encapsulation: internal representation is hidden.

III Subtyping: Object-interface subtyping enables cross-interface code reusing.
IV Inheritance: classes provide a mechanism to organize inheritance-based code reusing.
V Open recursion: self gets bound during object creation instead of class definition.

Remark (Two Approaches to Defining a Language)

• Embedding in lambda-calculus (previous chapter)
• Formalizing from scratch (this chapter): treat objects as primitive

Design Principles of Programming Languages, Spring 2023 21

Homework

Question (Exercise 18.11.1)
Use the fullref checker to implement the following extensions to the classes above:

1. Rewrite instrCounterClass so that it also counts calls to get.
2. Extend your modified instrCounterClasswith a subclass that adds a resetmethod, as in §18.4.
3. Add another subclass that also supports backups, as in §18.7.

Please submit electronically.

Aside
For those who still have not finalized the design of their final project, below are a few ideas:

• Embed a language’s core in lambda-calculus: prototype-based OOP, C with goto, array programming, …
• Formalize a language’s core in a “featherweight” style.
• Compile FJ to lambda-calculus and prove correctness of the compilation.

Design Principles of Programming Languages, Spring 2023 22

