

编程语言的设计原理 Design Principles of Programming Languages

Haiyan Zhao, Di Wang 赵海燕,王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 202;

Chap 20: Recursive Types

Examples Formalities Inductive Types Coinductive Types Subtyping

Review: Lists Defined in Chapter 11

List T describes finite-length lists whose elements are of type T.

Syntactic Forms

$$\begin{split} t &\coloneqq \dots \mid \text{nil}[T] \mid \text{cons}[T] \ t \mid \text{isnil}[T] \ t \mid \text{head}[T] \ t \mid \text{tail}[T] \ t \\ \nu &\coloneqq \dots \mid \text{nil}[T] \mid \text{cons}[T] \ \nu \ \nu \\ T &\coloneqq \dots \mid \text{List } T \end{split}$$

Typing Rules

$$\frac{\Gamma \vdash t_1 : T_1 \qquad \Gamma \vdash t_2 : \text{List } T_1}{\Gamma \vdash \text{nil}[T_1] : \text{List } T_1} \text{ T-NiL} \qquad \frac{\Gamma \vdash t_1 : T_1 \qquad \Gamma \vdash t_2 : \text{List } T_1}{\Gamma \vdash \text{cons}[T_1] t_1 t_2 : \text{List } T_1} \text{ T-Cons}$$

$$\frac{\Gamma \vdash t_1 : \text{List } T_{11}}{\Gamma \vdash \text{isnil}[T_{11}] t_1 : \text{Bool}} \text{ T-IsniL} \qquad \frac{\Gamma \vdash t_1 : \text{List } T_{11}}{\Gamma \vdash \text{head}[T_{11}] t_1 : T_{11}} \text{ T-Head} \qquad \frac{\Gamma \vdash t_1 : \text{List } T_{11}}{\Gamma \vdash \text{tail}[T_{11}] t_1 : \text{List } T_{11}} \text{ T-Tail}$$

Examples of Recursive Types

Design Principles of Programming Languages, Spring 2023

4

Question

Can we define list types in simply-typed lambda-calculus with extensions?

Remark

We have studied **tuples** and **variants**.

- Tuples: $\{T_i^{i \in 1...n}\}$
- Variants: $< l_i : T_i^{i \in 1...n} >$

Does the following definition work?

NatList = <nil:Unit, cons:{Nat, NatList}>

NatList as a Infinite Tree

NatList = <nil:Unit, cons:{Nat, NatList}>

Structural Recursive Types

Recursion Operator μ

NatList = μX . <nil:Unit, cons:{Nat, X}> This means that let NatList be the infinite type satisfying the equation:

X = <nil: Unit, cons: {Nat, X}>

Aside (Solving Type Equations)

Let [T] be the set of values of type T, e.g., $[Unit] = {unit}, [Nat] = \mathbb{N}$. The solution [X] to the equation above should satisfy:

$$[\![X]\!] = \left\{ <\texttt{nil=unit} \right\} \cup \left\{ <\texttt{cons}=\{\nu_1,\nu_2\} > \mid \nu_1 \in [\![\texttt{Nat}]\!], \nu_2 \in [\![X]\!] \right\}$$

Lists (cont.)


```
NatList = µX. <nil:Unit, cons:{Nat,X}>;
```

```
nil = <nil=unit> as NatList;
▶ nil : Natlist
cons = \lambda n:Nat. \lambda 1:NatList. <cons={n,1}> as NatList:
\blacktriangleright cons : Nat \rightarrow Natlist \rightarrow Natlist
isnil = \lambda l:NatList. case l of <nil=u> \Rightarrow true | <cons=p> \Rightarrow false;
▶ isnil : Natlist \rightarrow Bool
hd = \lambda l:NatList. case l of <nil=u> \Rightarrow 0 | <cons=p> \Rightarrow p.1;
\blacktriangleright hd : Natlist \rightarrow Nat
tl = \lambda l:NatList. case l of <nil=u> \Rightarrow l | <cons=p> \Rightarrow p.2:
▶ tl : NatList → NatList
sumlist = fix (\lambda s:NatList\rightarrowNat. \lambda l:NatList.
                         if isnil 1 then 0 else plus (hd 1) (s (t1 1)));
\blacktriangleright sumlist : Natlist \rightarrow Nat
```


Hungry Functions

A hungry function accepts any number of arguments and always return a new function that is hungry for more.

```
Hungry = \mu A. Nat\rightarrow A;
```

f = **fix** (λ f:Nat→Hungry. λ n:Nat. f); ▶ f : Nat→Nat→Hungry

```
f 0 1 2 3 4 5;
► <fun> : Hungry
```

Streams

Streams

A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.

```
Stream = μA. Unit→{Nat,A};
hd = λs:Stream. (s unit).1;
▶ hd : Stream → Nat
tl = λs:Stream. (s unit).2;
▶ tl : Stream → (μA. Unit→{Nat,A})
```

```
upfromO = fix (λf:Nat→Stream. λn:Nat. λ_:Unit. {n,f (succ n)}) O;

▶ upfromO : Unit→{Nat,Stream}
```

Question (Exercise 20.1.2)

Define a stream that yields successive elements of the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, ...).

Streams (cont.)

fib = fix (λf:Nat→Nat→Stream. λa:Nat. λb:Nat. λ_:Unit. {a,f b (plus a b)}) 1 1;
fib : Unit→{Nat,Stream};

```
hd fib;
    1 : Nat
hd (tl (tl (tl fib)));
    3 : Nat
hd (tl (tl (tl (tl (tl (tl fib))))));
    13 : Nat
```

Processes

A process accepts a value and returns a value and a new process.

```
Process = \muA. Nat\rightarrow{Nat,A}
```

Objects

Purely Functional Objects

An object accepts a message and returns a response to that message and **a new object** if mutated.

```
Counter = µC. {get:Nat, inc:Unit→C, dec:Unit→C};
```

Divergence

Remark

Recall omega from untyped lambda-calculus:

omega =
$$(\lambda \times . \times \times)$$
 $(\lambda \times . \times \times)$
We have omega —> omega —> omega —> ..., i.e., omega diverges.

Suppose we want to type $x : T_x \vdash x x : T$ for a given T. We obtain a type equation:

$$T_x = T_x \to T$$

Thus T_x can be defined as $\mu A.A \rightarrow T$.

Well-Typed Divergence

omega_T =
$$(\lambda x: (\mu A.A \rightarrow T). x x) (\lambda x: (\mu A.A \rightarrow T). x x);$$

 \blacktriangleright omega_T : T

Recursive types break the strong-normalization property!

Design Principles of Programming Languages, Spring 2023

Recursion

Remark

Recall the Y operator from untyped lambda-calculus:

$$Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))$$

For any f, the operator satisfies Y f $\longrightarrow^* f((\lambda x. f (x x)) (\lambda x. f (x x))) =_{\beta} f(Y f).$

Question

Can we give Y a type using recursive types?

$$\begin{array}{l} Y_T = \lambda f: T \rightarrow T. \ (\lambda \times : (\mu A.A \rightarrow T). \ f \ (x \ x)) \ (\lambda \times : (\mu A.A \rightarrow T). \ f \ (x \ x)) \\ \blacktriangleright \ Y_T : \ (T \rightarrow T) \ \rightarrow \ T \end{array}$$

Question (Homework)

Implement Y_T in OCaml. Does it really work as a fixed-point operator? Why? How to make it work? Show your solution is effective by using it to define a factorial function.

Untyped Lambda-Calculus

We can embed the whole untyped lambda-calculus into a statically typed language with recursive types.

 $D = \mu X \cdot X \rightarrow X;$

Let M be a closed untyped lambda-term. We can embed M, written M^* , as an element of D:

$$\begin{split} x^{\star} &= x \\ (\lambda x.M)^{\star} &= \text{lam}\left(\lambda x\text{:}D.M^{\star}\right) \\ (M\,N)^{\star} &= \text{ap}\,M^{\star}\,N^{\star} \end{split}$$

Formalities

$\label{eq:What is the relation between the type μX.T and its one-step unfolding?$$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList} > $$ NatList ~ <nil: Unit, cons: {Nat, NatList} > $$ NatList ~ <nil: Unit, cons: {NatList} > $$ NatList} > $$ NatLis$

Two Approaches

NatList ~ <nil: Unit, cons: {Nat, NatList}>

The Equi-Recursive Approach

- Take these two type expressions as definitionally equal—interchangeable in all contexts—since they stand for the same infinite tree.
- This approach is more intuitive, but places stronger demands on the type-checker.

The Iso-Recursive Approach

- Take a recursive type and its unfolding as different, but isomorphic.
- This approach is notationally heavier, requiring programs to be decorated with fold and unfold instructions wherever recursive types are used.

Question

Which approach did we use in the previous examples?

The Iso-Recursive Approach

- $[X \mapsto \mu X.T]T$ is the one-step unfolding of $\mu X.T$.
- The pair of functions $unfold[\mu X.T]$ and $fold[\mu X.T]$ are witness functions for isomorphism.

Question

What is the one-step unfolding of μX .<nil : Unit, cons : {Nat, X}>?

Iso-Recursive Types ($\lambda\mu$)

Syntactic Forms

$$t := \dots | \text{ fold [T] } t | \text{ unfold [T] } t \qquad \nu := \dots | \text{ fold [T] } \nu \qquad T := \dots | X | \mu X.T$$

Evaluation Rules

	(E-Fld)	(E-Unfld)	
(E-ONFLDFLD)	$t_1 \longrightarrow t_1'$	$t_1 \longrightarrow t_1'$	
unfold [S] (fold [T] ν_1) \longrightarrow ν_1	fold [T] $t_1 \longrightarrow \text{fold}$ [T] t_1'	unfold [T] $t_1 \longrightarrow$ unfold [T] t_1'	

Typing Rules

$$\frac{(T\text{-FLD})}{\prod \mu X.T_1} \frac{\Gamma \vdash t_1: [X \mapsto U]T_1}{\Gamma \vdash \texttt{fold}\; [U]\; t_1: U}$$

$$\label{eq:ct-UNFLD} \begin{split} & (T\text{-}U\text{NFLD}) \\ & \frac{U = \mu X.T_1 \quad \Gamma \vdash t_1: U}{\Gamma \vdash \text{unfold} \; [U] \; t_1: [X \mapsto U]T_1} \end{split}$$

Lists (revisited)


```
NatList = \mu X. <nil:Unit, cons:{Nat,X}>
```

```
NLBody = <nil:Unit, cons:{Nat,NatList}>;
```

Question

OCaml is iso-recursive (by default). Where are the fold's and unfold's?

Inductive & Coinductive Types

Design Principles of Programming Languages, Spring 2023

Recursive Types are Useless as Logics

Remark (Curry-Howard Correspondence)

In simply-typed lambda-calculus, we can interpret types as logical propositions.

 $\begin{array}{l} \text{proposition } P \supset Q \\ \text{proposition } P \land Q \\ \text{proposition } P \lor Q \\ \text{proposition } P \text{ is provable} \\ \text{proof of proposition } P \end{array}$

type $P \rightarrow Q$ type $P \times Q$ type P + Qtype P is inhabited term t of type P

Observation

Recursive types are so powerful that the strong-normalization property is broken.

$$\mathsf{omega}_{\mathsf{T}} = (\mathbf{\lambda} \times : (\mathbf{\mu} \mathsf{A} . \mathsf{A} \rightarrow \mathsf{T}) . \times \mathbf{x}) (\mathbf{\lambda} \times : (\mathbf{\mu} \mathsf{A} . \mathsf{A} \rightarrow \mathsf{T}) . \times \mathbf{x});$$

▶ omega_T : T

The fact that omega_T is well-typed for every T means that every proposition in the logic is provable—that is, the logic is inconsistent.

Restricting Recursive Types

Question

What kinds of recursive types can ensure strong-normalization? What kinds cannot?

Lists	μX. <nil:unit,cons:{nat,x}></nil:unit,cons:{nat,x}>	1
Streams	$\mu A.Unit ightarrow \{Nat, A\}$	1
Divergence	$\mu A.A \rightarrow T$	X
Untyped lambda-calculus	$\mu X. X \rightarrow X$	X

Observation

It seems problematic for a recursive type to recurse in the contravariant positions.

Inductive Types

$\mu X.T$ pos:	"type μX.T is po	sitive"				
$\overline{\mu X.X \text{ pos}}$	μX.Unit pos	μX.Nat pos <u> T₁ typ</u> μX	$\frac{\mu X.T_1 \text{ pos}}{\mu X.T_1} \ge \frac{\mu X.T_1}{\mu X.T_2}$ e $\mu X.T_2$ pos	$\frac{\mu X.T_2 \text{ pos}}{\langle T_2 \text{ pos}}$	<u>μΧ.Τ</u> 1 pos μΧ.Τ1 -	μX.T ₂ pos ⊢T ₂ pos

Question

Which of the following types are positive?

 $\mu X.{\texttt{<nil}}:\texttt{Unit},\texttt{cons}:\{\texttt{Nat},X\}{\texttt{>}}\quad \mu A.\texttt{Unit} \rightarrow \{\texttt{Nat},A\} \quad \mu A.A \rightarrow \mathsf{T} \quad \mu X.X \rightarrow X$

Iterators for Well-Founded Recursion

Remark

Because of strong normalization, we cannot use the **fix** operator to define recursive functions on recursive types.

PRINCIPLE

We can use iteration instead of general recursion. For $NatList = \mu X.<nil: Unit, cons: {Nat, X}>$, we have

$$\label{eq:result} \begin{array}{c} \vdash t_1: \texttt{NatList} & \Gamma, x: <\texttt{nil}: \texttt{Unit}, \texttt{cons}: \{\texttt{Nat}, \texttt{S}\} > \vdash t_2: \texttt{S} \\ \hline & \Gamma \vdash \texttt{iter} \; [\texttt{NatList}] \; t_1 \; \texttt{with} \; \texttt{x}. t_2: \texttt{S} \end{array} \; \texttt{T-ITER}$$

 $\frac{1}{\text{iter [NatList] (fold [NatList] <nil=unit>) with x.t_2 \longrightarrow [x \mapsto <nil=unit>]t_2}} E-\text{Iter-Nil}$

iter [NatList] (fold [NatList] < cons= $\{v_1, v_2\}$ >) with x.t₂ E-ITER-CONS

 $\texttt{let } y = (\texttt{iter} \; [\texttt{NatList}] \; \nu_2 \; \texttt{with} \; x.t_2) \; \texttt{in} \; [x \mapsto < \texttt{cons} = \{\nu_1, y\} >] t_2$

Iterators for Well-Founded Recursion


```
sumlist = \lambda 1:NatList. iter [NatList] 1
                                    with x case x of
                                                  \langle nil=u \rangle \Rightarrow 0
                                                | < cons=p> \Rightarrow plus p.1 p.2;
▶ sumlist : Natlist → Nat
append = \lambda 11:NatList. \lambda 12:NatList.
               iter [NatList] 11
                  with x. case x of
                                 \langle nil=u \rangle \Rightarrow 12
                                \langle cons=p \rangle \Rightarrow fold [NatList] \langle cons=\{p,1,p,2\} \rangle;
▶ append : NatList \rightarrow NatList \rightarrow NatList
```

Streams (revisited)

Streams

A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.

```
\texttt{Stream} = \mu\texttt{A. Unit}{\rightarrow} \{\texttt{Nat},\texttt{A}\};
```

```
upfromO = fix (λf:Nat→Stream. λn:Nat. fold [Stream] (λ_:Unit. {n,f (succ n)})) O;
▶ upfromO : Stream
```

Question

What is the difference between lists and streams?

PRINCIPLE

Lists are defined as how to **construct** them. Streams are defined as how to **destruct** them.

Coinductive Types

$\nu X.T$ pos: "type $\nu X.T$ is positive"

			$vX.T_1$ pos	$vX.T_2$ pos	$\nu X.T_1$ pos	$vX.T_2$ pos
$\overline{\nu X.X}$ pos	vX.Unit pos	vX.Nat pos	$\nu X.T_1 >$	\times T ₂ pos	νΧ.Τ ₁ -	+T ₂ pos
		T ₁ typ	e $vX.T_2$ po	OS		
		νΧ	$.T_1 \to T_2 \text{ pos}$			

Remark (Solving Type Equations)

Let [T] be the set of values of type T, e.g., $[Unit] = {unit}, [Nat] = \mathbb{N}$. The solution [X] to the equation $X = {nil}$: Unit, cons : {Nat, X}> should satisfy:

$$[\![X]\!] = \left\{ <\texttt{nil} = \texttt{unit} > \right\} \cup \left\{ <\texttt{cons} = \{\nu_1, \nu_2\} > \mid \nu_1 \in [\![\texttt{Nat}]\!], \nu_2 \in [\![X]\!] \right\}$$

Coinductive types are the greatest solutions. Inductive types are the least solutions.

Design Principles of Programming Languages, Spring 2023

Coinductive Types

PRINCIPLE

We can use **generation** instead of general recursion or iteration. For Stream = vX. {Nat, X}, we have

$$\begin{array}{ll} \Gamma \vdash t_1: \textbf{S} & \Gamma, x: \textbf{S} \vdash t_2: \{\texttt{Nat}, \textbf{S}\} \\ \Gamma \vdash \textbf{gen} \; [\texttt{Stream}] \; t_1 \; \textbf{with} \; x.t_2: \texttt{Stream} \end{array} \; \textbf{T-Gen} \end{array}$$

unfold [Stream] (gen [Stream] v_1 with x.t₂)

let $y = [x \mapsto v_1]t_2$ in {y.1, (gen [Stream] y.2 with x.t₂)}

```
upfrom0 = qen [Stream] 0 with x. {x, succ(x)};
▶ upfrom0 : Stream
fib = gen [Stream] {1,1} with x. {x.1,{x.2,(plus x.1 x.2)}};
▶ fib : Stream
```

What's More

Summary

$$\begin{split} t &\coloneqq \dots \mid \text{fold} \; [\texttt{NatList}] \; t \mid \textbf{iter} \; [\texttt{NatList}] \; t_1 \; \textbf{with} \; x.t_2 \mid \texttt{unfold} \; [\texttt{Stream}] \; t \mid \textbf{gen} \; [\texttt{Stream}] \; t_1 \; \textbf{with} \; x.t_2 \\ \nu &\coloneqq \dots \mid \texttt{fold} \; [\texttt{NatList}] \; \nu \mid \textbf{gen} \; [\texttt{Stream}] \; \nu_1 \; \textbf{with} \; x.t_2 \end{split}$$

Aside

We only introduce the evaluation and typing rules for NatList and Stream. How to evaluate and type-check general inductive types $\mu X.T$ and coinductive types $\nu X.T$? How to prove the strong-normalization property?

Read more about inductive & coinductive types: N. P. Mendler. 1987. Recursive Types and Type Constraints in Second-Order Lambda Calculus. In *Logic in Computer Science* (LICS'87), 30–36.

Subtyping

Design Principles of Programming Languages, Spring 202;

Can we deduce the relation below, given that Even <: Nat?

 $\mu X.Nat \rightarrow (Even \times X) <: \mu X.Even \rightarrow (Nat \times X)$

Homework

Question

- Implement Y_T (shown on Slide 14) in OCaml. Does it really work as a fixed-point operator? Why?
- How to make it work? Show your solution is effective by using it to define a factorial function.
- Reformulate your solution with explicit fold's and unfold's. You may check your solution using the fullisorec checker.