
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang
赵海燕，王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 2023 1

Chap 20: Recursive Types

Examples
Formalities

Inductive Types
Coinductive Types

Subtyping

Design Principles of Programming Languages, Spring 2023 2

Review: Lists Defined in Chapter 11
List T describes finite-length lists whose elements are of type T .

Syntactic Forms

t ::= . . . | nil[T] | cons[T] t t | isnil[T] t | head[T] t | tail[T] t
v ::= . . . | nil[T] | cons[T] v v

T ::= . . . | List T

Typing Rules

Γ ` nil[T1] : List T1
T-NIL

Γ ` t1 : T1 Γ ` t2 : List T1

Γ ` cons[T1] t1 t2 : List T1
T-CONS

Γ ` t1 : List T11

Γ ` isnil[T11] t1 : Bool T-ISNIL
Γ ` t1 : List T11

Γ ` head[T11] t1 : T11
T-HEAD

Γ ` t1 : List T11

Γ ` tail[T11] t1 : List T11
T-TAIL

Design Principles of Programming Languages, Spring 2023 3

Examples of Recursive Types

Design Principles of Programming Languages, Spring 2023 4

Lists

Question
Can we define list types in simply-typed lambda-calculus with extensions?

Remark
We have studied tuples and variants.

• Tuples: {Tii∈1...n}
• Variants: <li : Tii∈1...n>

Does the following definition work?
NatList = <nil:Unit, cons:{Nat, NatList}>

Design Principles of Programming Languages, Spring 2023 5

NatList as a Infinite Tree
NatList = <nil:Unit, cons:{Nat, NatList}>

{nil: , cons: }

Unit { , }

Nat {nil: , cons: }

Unit { , }

Nat {nil: , cons: }

Unit ...

Design Principles of Programming Languages, Spring 2023 6

Structural Recursive Types

Recursion Operator µ

NatList = µX. <nil:Unit, cons:{Nat,X}>
This means that let NatList be the infinite type satisfying the equation:

X = <nil : Unit, cons : {Nat,X}>

Aside (Solving Type Equations)
Let JTK be the set of values of type T , e.g., JUnitK = {unit}, JNatK = N.
The solution JXK to the equation above should satisfy:

JXK = {
<nil=unit>

}
∪
{
<cons={v1, v2}> | v1 ∈ JNatK, v2 ∈ JXK}

Design Principles of Programming Languages, Spring 2023 7

Lists (cont.)
NatList = µX. <nil:Unit, cons:{Nat,X}>;

nil = <nil=unit> as NatList;
▶ nil : NatList
cons = λ n:Nat. λ l:NatList. <cons={n,l}> as NatList;
▶ cons : Nat → NatList → NatList

isnil = λ l:NatList. case l of <nil=u> ⇒ true | <cons=p> ⇒ false;
▶ isnil : NatList → Bool
hd = λ l:NatList. case l of <nil=u> ⇒ 0 | <cons=p> ⇒ p.1;
▶ hd : NatList → Nat
tl = λ l:NatList. case l of <nil=u> ⇒ l | <cons=p> ⇒ p.2;
▶ tl : NatList → NatList

sumlist = fix (λ s:NatList→Nat. λ l:NatList.
if isnil l then 0 else plus (hd l) (s (tl l)));

▶ sumlist : NatList → Nat
Design Principles of Programming Languages, Spring 2023 8

Hungry Functions

Hungry Functions
A hungry function accepts any number of arguments and always return a new function that is hungry for more.

Hungry = µA. Nat→A;

f = fix (λ f:Nat→Hungry. λ n:Nat. f);
▶ f : Nat→Nat→Hungry

f 0 1 2 3 4 5;
▶ <fun> : Hungry

Design Principles of Programming Languages, Spring 2023 9

Streams
Streams
A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.

Stream = µA. Unit→{Nat,A};

hd = λ s:Stream. (s unit).1;
▶ hd : Stream → Nat
tl = λ s:Stream. (s unit).2;
▶ tl : Stream → (µA. Unit→{Nat,A})

upfrom0 = fix (λ f:Nat→Stream. λ n:Nat. λ _:Unit. {n,f (succ n)}) 0;
▶ upfrom0 : Unit→{Nat,Stream}

Question (Exercise 20.1.2)
Define a stream that yields successive elements of the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, . . .).

Design Principles of Programming Languages, Spring 2023 10

Streams (cont.)
fib = fix (λ f:Nat→Nat→Stream. λ a:Nat. λ b:Nat. λ _:Unit. {a,f b (plus a b)}) 1 1;
▶ fib : Unit→{Nat,Stream};

hd fib;
▶ 1 : Nat
hd (tl (tl (tl fib)));
▶ 3 : Nat
hd (tl (tl (tl (tl (tl (tl fib))))));
▶ 13 : Nat

Processes
A process accepts a value and returns a value and a new process.

Process = µA. Nat→{Nat,A}

Design Principles of Programming Languages, Spring 2023 11

Objects

Purely Functional Objects
An object accepts a message and returns a response to that message and a new object if mutated.

Counter = µC. {get:Nat, inc:Unit→C, dec:Unit→C};

c = let create = fix (λ f:{x:Nat}→Counter. λ s:{x:Nat}.
{get = s.x,
inc = λ _:Unit. f {x=succ(s.x)},
dec = λ _:Unit. f {x=pred(s.x)} })

in (create {x=0}) as Counter;
▶ c : Counter

((c.inc unit).inc unit).get;
▶ 2 : Nat

Design Principles of Programming Languages, Spring 2023 12

Divergence

Remark
Recall omega from untyped lambda-calculus:

omega = (λ x. x x) (λ x. x x)
We have omega −→ omega −→ omega −→ . . ., i.e., omega diverges.

Suppose we want to type x : Tx ` x x : T for a given T . We obtain a type equation:

Tx = Tx → T

Thus Tx can be defined as µA.A → T .

Well-Typed Divergence
omegaT = (λ x:(µA.A→T). x x) (λ x:(µA.A→T). x x);
▶ omegaT : T

Recursive types break the strong-normalization property!
Design Principles of Programming Languages, Spring 2023 13

Recursion
Remark
Recall the Y operator from untyped lambda-calculus:

Y = λ f. (λ x. f (x x)) (λ x. f (x x))
For any f, the operator satisfies Y f −→∗ f ((λx.f (x x)) (λx.f (x x))) =β f (Y f).

Question
Can we give Y a type using recursive types?

YT = λ f:T→T. (λ x:(µA.A→T). f (x x)) (λ x:(µA.A→T). f (x x));
▶ YT : (T→T) → T

Question (Homework)
Implement YT in OCaml. Does it really work as a fixed-point operator? Why? How to make it work?
Show your solution is effective by using it to define a factorial function.

Design Principles of Programming Languages, Spring 2023 14

Untyped Lambda-Calculus

We can embed the whole untyped lambda-calculus into a statically typed language with recursive types.
D = µX.X→X;

lam = λ f:D→D. f as D;
▶ lam : (D→D) → D
ap = λ f:D. λ a:D. (f a) as D;
▶ ap : D → D → D

Let M be a closed untyped lambda-term. We can embed M, written M⋆, as an element of D:

x⋆ = x

(λx.M)⋆ = lam (λx:D.M⋆)

(MN)⋆ = apM⋆ N⋆

Design Principles of Programming Languages, Spring 2023 15

Formalities
What is the relation between the type µX.T and its one-step unfolding?

NatList ∼ <nil : Unit,cons : {Nat,NatList}>

Design Principles of Programming Languages, Spring 2023 16

Two Approaches
NatList ∼ <nil : Unit, cons : {Nat, NatList}>

The Equi-Recursive Approach

• Take these two type expressions as definitionally equal—interchangeable in all contexts—since they stand
for the same infinite tree.

• This approach is more intuitive, but places stronger demands on the type-checker.

The Iso-Recursive Approach

• Take a recursive type and its unfolding as different, but isomorphic.
• This approach is notationally heavier, requiring programs to be decorated with fold and unfold

instructions wherever recursive types are used.

Question
Which approach did we use in the previous examples?
Design Principles of Programming Languages, Spring 2023 17

The Iso-Recursive Approach

µX.T [X 7→ µX.T]T

unfold[µX.T]

fold[µX.T]
• [X 7→ µX.T]T is the one-step unfolding of µX.T .
• The pair of functions unfold[µX.T] and fold[µX.T] are witness functions for isomorphism.

Question
What is the one-step unfolding of µX.<nil : Unit, cons : {Nat,X}>?

Design Principles of Programming Languages, Spring 2023 18

Iso-Recursive Types (λµ)
Syntactic Forms

t ::= . . . | fold [T] t | unfold [T] t v ::= . . . | fold [T] v T ::= . . . | X | µX.T

Evaluation Rules

(E-UNFLDFLD)

unfold [S] (fold [T] v1) −→ v1

(E-FLD)
t1 −→ t ′1

fold [T] t1 −→ fold [T] t ′1

(E-UNFLD)
t1 −→ t ′1

unfold [T] t1 −→ unfold [T] t ′1

Typing Rules

(T-FLD)
U = µX.T1 Γ ` t1 : [X 7→ U]T1

Γ ` fold [U] t1 : U

(T-UNFLD)
U = µX.T1 Γ ` t1 : U

Γ ` unfold [U] t1 : [X 7→ U]T1

Design Principles of Programming Languages, Spring 2023 19

Lists (revisited)
NatList = µX. <nil:Unit, cons:{Nat,X}>

NLBody = <nil:Unit, cons:{Nat,NatList}>;

nil = fold [NatList] (<nil=unit> as NLBody);
▶ nil : NatList
cons = λ n:Nat. λ l:NatList. fold [NatList] (<cons={n,l}> as NLBody);
▶ cons : Nat → NatList → NatList

hd = λ l:NatList.
case unfold [NatList] l of
<nil=u> ⇒ 0

| <cons=p> ⇒ p.1;
▶ hd : NatList → Nat

Question
OCaml is iso-recursive (by default). Where are the fold’s and unfold’s?
Design Principles of Programming Languages, Spring 2023 20

Inductive & Coinductive Types

Design Principles of Programming Languages, Spring 2023 21

Recursive Types are Useless as Logics
Remark (Curry-Howard Correspondence)
In simply-typed lambda-calculus, we can interpret types as logical propositions.

proposition P ⊃ Q type P → Q

proposition P∧Q type P×Q

proposition P∨Q type P+Q

proposition P is provable type P is inhabited
proof of proposition P term t of type P

Observation
Recursive types are so powerful that the strong-normalization property is broken.

omegaT = (λ x:(µA.A→T). x x) (λ x:(µA.A→T). x x);
▶ omegaT : T

The fact that omegaT is well-typed for every Tmeans that every proposition in the logic is provable—that is, the
logic is inconsistent.

Design Principles of Programming Languages, Spring 2023 22

Restricting Recursive Types

Question
What kinds of recursive types can ensure strong-normalization? What kinds cannot?

Lists µX.<nil : Unit, cons : {Nat,X}> 3
Streams µA.Unit → {Nat,A} 3

Divergence µA.A → T 7
Untyped lambda-calculus µX.X → X 7

Observation
It seems problematic for a recursive type to recurse in the contravariant positions.

Design Principles of Programming Languages, Spring 2023 23

Inductive Types

µX.T pos: “type µX.T is positive”

µX.X pos µX.Unit pos µX.Nat pos
µX.T1 pos µX.T2 pos

µX.T1 × T2 pos
µX.T1 pos µX.T2 pos

µX.T1 + T2 pos

T1 type µX.T2 pos
µX.T1 → T2 pos

Question
Which of the following types are positive?

µX.<nil : Unit, cons : {Nat,X}> µA.Unit → {Nat,A} µA.A → T µX.X → X

Design Principles of Programming Languages, Spring 2023 24

Iterators for Well-Founded Recursion

Remark
Because of strong normalization, we cannot use the fix operator to define recursive functions on recursive types.

PRINCIPLE
We can use iteration instead of general recursion. For NatList = µX.<nil : Unit, cons : {Nat,X}>, we have

Γ ` t1 : NatList Γ , x : <nil : Unit, cons : {Nat,S}> ` t2 : S

Γ ` iter [NatList] t1 with x.t2 : S
T-ITER

iter [NatList] (fold [NatList] <nil=unit>) with x.t2 −→ [x 7→ <nil=unit>]t2
E-ITER-NIL

iter [NatList] (fold [NatList] <cons={v1, v2}>) with x.t2
−→

let y = (iter [NatList] v2 with x.t2) in [x 7→ <cons={v1,y}>]t2

E-ITER-CONS

Design Principles of Programming Languages, Spring 2023 25

Iterators for Well-Founded Recursion

sumlist = λ l:NatList. iter [NatList] l
with x. case x of

<nil=u> ⇒ 0
| <cons=p> ⇒ plus p.1 p.2;

▶ sumlist : NatList → Nat

append = λ l1:NatList. λ l2:NatList.
iter [NatList] l1
with x. case x of

<nil=u> ⇒ l2
| <cons=p> ⇒ fold [NatList] <cons={p.1,p.2}>;

▶ append : NatList → NatList → NatList

Design Principles of Programming Languages, Spring 2023 26

Streams (revisited)
Streams
A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.
Stream = µA. Unit→{Nat,A};

upfrom0 = fix (λ f:Nat→Stream. λ n:Nat. fold [Stream] (λ _:Unit. {n,f (succ n)})) 0;
▶ upfrom0 : Stream

Question
What is the difference between lists and streams?

PRINCIPLE
Lists are defined as how to construct them.
Streams are defined as how to destruct them.

Design Principles of Programming Languages, Spring 2023 27

Coinductive Types
νX.T pos: “type νX.T is positive”

νX.X pos νX.Unit pos νX.Nat pos
νX.T1 pos νX.T2 pos

νX.T1 × T2 pos
νX.T1 pos νX.T2 pos

νX.T1 + T2 pos

T1 type νX.T2 pos
νX.T1 → T2 pos

Remark (Solving Type Equations)
Let JTK be the set of values of type T , e.g., JUnitK = {unit}, JNatK = N.
The solution JXK to the equation X = <nil : Unit, cons : {Nat,X}> should satisfy:

JXK = {
<nil = unit>

}
∪
{
<cons = {v1, v2}> | v1 ∈ JNatK, v2 ∈ JXK}

Coinductive types are the greatest solutions. Inductive types are the least solutions.
Design Principles of Programming Languages, Spring 2023 28

Coinductive Types

PRINCIPLE
We can use generation instead of general recursion or iteration. For Stream = νX. {Nat,X}, we have

Γ ` t1 : S Γ , x : S ` t2 : {Nat,S}
Γ ` gen [Stream] t1 with x.t2 : Stream T-GEN

unfold [Stream] (gen [Stream] v1 with x.t2)
−→

let y = [x 7→ v1]t2 in {y.1, (gen [Stream] y.2 with x.t2)}

E-UNFOLD-GEN

upfrom0 = gen [Stream] 0 with x. {x,succ(x)};
▶ upfrom0 : Stream
fib = gen [Stream] {1,1} with x. {x.1,{x.2,(plus x.1 x.2)}};
▶ fib : Stream

Design Principles of Programming Languages, Spring 2023 29

What’s More

Summary

t ::= . . . | fold [NatList] t | iter [NatList] t1 with x.t2 | unfold [Stream] t | gen [Stream] t1 with x.t2
v ::= . . . | fold [NatList] v | gen [Stream] v1 with x.t2

Aside
We only introduce the evaluation and typing rules for NatList and Stream.
How to evaluate and type-check general inductive types µX.T and coinductive types νX.T ?
How to prove the strong-normalization property?

Read more about inductive & coinductive types: N. P. Mendler. 1987. Recursive Types and Type Constraints in
Second-Order Lambda Calculus. In Logic in Computer Science (LICS’87), 30–36.

Design Principles of Programming Languages, Spring 2023 30

Subtyping

Design Principles of Programming Languages, Spring 2023 31

Can we deduce the relation below, given that Even <: Nat?

µX.Nat → (Even×X) <: µX.Even → (Nat×X)

→

Nat ×

Even →

Nat ×

Even ...

→

Even ×

Nat →

Even ×

Nat ...

<:

:> <:

<: <:

:> <:

<: <:

Design Principles of Programming Languages, Spring 2023 32

Homework

Question
• Implement YT (shown on Slide 14) in OCaml. Does it really work as a fixed-point operator? Why?
• How to make it work? Show your solution is effective by using it to define a factorial function.
• Reformulate your solution with explicit fold’s and unfold’s. You may check your solution using the
fullisorec checker.

Design Principles of Programming Languages, Spring 2023 33

