
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang
赵海燕，王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 2023 1



Chap 21: Metatheory of Recursive Types

Finite & Infinite Types
Induction & Coinduction

Subtyping
Membership Checking

Design Principles of Programming Languages, Spring 2023 2



Can we deduce the relation below, given that Even <: Nat?

µX.Nat → (Even×X) <: µX.Even → (Nat×X)

→

Nat ×

Even →

Nat ×

Even ...

→

Even ×

Nat →

Even ×

Nat ...

<:

:> <:

<: <:

:> <:

<: <:

PRINCIPLE
We need to develop a metatheory of subtyping on infinite tree types.
Design Principles of Programming Languages, Spring 2023 3



Finite & Infinite Types

Design Principles of Programming Languages, Spring 2023 4



Tree Types

For brevity, we only consider three type constructors: →, ×, and Top.

T ::= Top | T → T | T × T

Definition
A tree type is a partial function T : {1, 2}∗ ⇀ {→,×, Top} satisfying the following constraints:

• T(•) is defined;
• if T(π,σ) is defined then T(π) is defined;
• if T(π) = → or T(π) = × then T(π, 1) and T(π, 2) are defined;
• if T(π) = Top then T(π, 1) and T(π, 2) are undefined.

Design Principles of Programming Languages, Spring 2023 5



Tree Types
(Top× Top) → Top

→

× Top

Top Top

1 2

1 2

Top → (Top → (Top → . . .))

→

Top →

Top →

Top ...

1 2

1 2

1 2

Definition
A tree type T is finite if dom(T) is finite.
The set of all tree types is written T; the subset of all finite tree types is written Tf.

Question
How to characterize T and Tf?
Design Principles of Programming Languages, Spring 2023 6



Induction & Coinduction

Design Principles of Programming Languages, Spring 2023 7



Review: Induction
By Inference Rules
Tf is the least set of tree types defined by the following rules:

Top ∈ Tf

T1 ∈ Tf T2 ∈ Tf

T1 → T2 ∈ Tf

T1 ∈ Tf T2 ∈ Tf

T1 × T2 ∈ Tf

By Union of Sets

T0
def
= ∅

Ti+1
def
= {Top}∪ {T1 → T2 | T1, T2 ∈ Ti}∪ {T1 × T2 | T1, T2 ∈ Ti}

Tf
def
=

∪
i

Ti

Let F(X) def
= {Top}∪ {T1 → T2 | T1, T2 ∈ X}∪ {T1 × T2 | T1, T2 ∈ X}. Then Tf =

∪
i F

i(∅).
How to characterize the function F?
Design Principles of Programming Languages, Spring 2023 8



Generating Functions
A Universal Set U
U represents “everything in the world.”

Definition (Generating Functions)
A generating function is a function F : P(U) → P(U) that is monotone, i.e., X ⊆ Y implies F(X) ⊆ F(Y).

Let F be monotone, and X be a subset of U.
• X is F-closed if F(X) ⊆ X.
• X is F-consistent if X ⊆ F(X).
• X is a fixed point of F if F(X) = X.

Example
Recall F(X) def

= {Top}∪ {T1 → T2 | T1, T2 ∈ X}∪ {T1 × T2 | T1, T2 ∈ X}. Then Tf is a fixed point of F.
IsTf the only fixed point?
Design Principles of Programming Languages, Spring 2023 9



Knaster-Tarski Theorem
THEOREM

• The intersection of all F-closed sets is the least fixed point of F, written µF.
• The union of all F-consistent sets is the greatest fixed point of F, written νF.

Question

c

c

b

b c

a

What are µE1 and νE1?

Question
Recall F(X) def

= {Top}∪ {T1 → T2 | T1, T2 ∈ X}∪ {T1 × T2 | T1, T2 ∈ X}.
What are the least and greatest fixed points of F?

µF = Tf νF = T

Design Principles of Programming Languages, Spring 2023 10



Principles of Induction & Coinduction

PRINCIPLE (INDUCTION)
If X is F-closed (i.e., F(X) ⊆ X), then µF ⊆ X.

Remark
Any property whose characteristic set is closed under F is true of all elements of the inductively defined set µF.

PRINCIPLE (COINDUCTION)
If X is F-consistent (i.e., X ⊆ F(X)), then X ⊆ νF.

Remark
The coinduction principle is a method for establishing that an element x is in the coinductively defined set νF.

Design Principles of Programming Languages, Spring 2023 11



Subtyping

Design Principles of Programming Languages, Spring 2023 12



Finite Subtyping
By Inference Rules

T <: Top
T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

S1 <: T1 S2 <: T2

S1 × S2 <: T1 × T2

By a Generating Function
Two finite tree types S and T are in the subtype relation (“S is a subtype of T ”) if (S, T) ∈ µSf, where the
monotone function

Sf ∈ P(Tf × Tf) → P(Tf × Tf)

is defined by

Sf(R)
def
= {(T , Top) | T ∈ Tf}

∪ {(S1 → S2, T1 → T2) | (T1,S1), (S2, T2) ∈ R}

∪ {(S1 × S2, T1 × T2) | (S1, T1), (S2, T2) ∈ R}.

Design Principles of Programming Languages, Spring 2023 13



Infinite Subtyping
By Inference Rules

T <: Top
T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

S1 <: T1 S2 <: T2

S1 × S2 <: T1 × T2

The same set of rules, but interpreted coinductively!

By a Generating Function
Two (finite or infinite) tree types S and T are in the subtype relation (“S is a subtype of T ”) if (S, T) ∈ νS, where
the monotone function

S ∈ P(T × T) → P(T × T)

is defined by

S(R)
def
= {(T , Top) | T ∈ T}

∪ {(S1 → S2, T1 → T2) | (T1,S1), (S2, T2) ∈ R}

∪ {(S1 × S2, T1 × T2) | (S1, T1), (S2, T2) ∈ R}.

Design Principles of Programming Languages, Spring 2023 14



Exercises

Question (Exercise 21.3.3)
Check that νS is not the whole of T × T by exhibiting a pair (S, T) that is not in νS.

Question (Exercise 21.3.4)
Is there a pair of types (S, T) that is related by νS, but not by µS?
What about a pair of types (S, T) that is related by νSf, but not by µSf?

Design Principles of Programming Languages, Spring 2023 15



Transitivity

Definition
A relation R ⊆ U×U is transitive if R is closed under the monotone function

TR(R)
def
= {(x,y) | ∃z ∈ U. (x, z), (z,y) ∈ R},

i.e., if TR(R) ⊆ R.

THEOREM
νS is transitive.

LEMMA
Let F ∈ P(U×U) → P(U×U) be a monotone function.
If TR(F(R)) ⊆ F(TR(R)) for any R ⊆ U×U, then νF is transitive.

Design Principles of Programming Languages, Spring 2023 16



Membership Checking
How to check S <: T algorithmically?

Design Principles of Programming Languages, Spring 2023 17



µ-Types
Definition
Let X range over a fixed countable set {X1,X2, . . .} of type variables. The set of rawµ-types is the set of
expressions defined by the following grammar (inductively):

T ::= X | Top | T → T | T × T | µX.T

Definition
A raw µ-type T is contractive (and called a µ-type) if, for any subexpression of T of the form µX1.µX2. . . . µXn.S,
the body S is not X.

The set of µ-types is written Tm.

Question
What is the relation between Tm and T (the set of tree types)?

Design Principles of Programming Languages, Spring 2023 18



Finite Notation for (Some) (Possibly-)Infinite Tree Types
The function treeof , mapping closed µ-types to tree types, is defined inductively as follows:

treeof (Top)(•) def
= Top

treeof (T1 → T2)(•)
def
= → treeof (T1 → T2)(i,π)

def
= treeof (Ti)(π)

treeof (T1 × T2)(•)
def
= × treeof (T1 × T2)(i,π)

def
= treeof (Ti)(π)

treeof (µX.T)(π) def
= treeof ([X 7→ µX.T ]T)(π)

Question
Why is treeof well-defined?

Answer
Every recursive use of treeof on the right-hand side reduces the lexicographic size of the pair (|π|,µ-height(T)).

Design Principles of Programming Languages, Spring 2023 19



treeof (µX.((X× Top) → X))

→

×

→ Top

× ...

...
Top

→

× ...

...
Top

1

1 2

1 2
1 2

2

1 2

1

2

Design Principles of Programming Languages, Spring 2023 20



Subtyping onµ-Types
µ-Folding Rules

S <: [X 7→ µX.T ]T
S <: µX.T

[X 7→ µX.S]S <: T

µX.S <: T

Inductive or coinductive?

By a Generating Function
Two µ-types S and T are said to be in the subtype relation if (S, T) ∈ νSd, where the monotone function
Sd ∈ P(Tm × Tm) → P(Tm × Tm) is defined by

Sd(R)
def
= {(S, Top) | T ∈ Tm}

∪ {(S1 → S2, T1 → T2) | (T1,S1), (S2, T2) ∈ R}

∪ {(S1 × S2, T1 × T2) | (S1, T1), (S2, T2) ∈ R}

∪ {(S,µX.T) | (S, [X 7→ µX.T ]T) ∈ R}

∪ {(µX.S, T) | ([X 7→ µX.S]S, T) ∈ R}.
Design Principles of Programming Languages, Spring 2023 21



Subtyping Correspondence: µ-Types and Tree Types
THEOREM
Let (S, T) ∈ Tm × Tm. Then (S, T) ∈ νSd if and only if (treeof (S), treeof (T)) ∈ νS.

Question
How to characterize the subset treeof (Tm) ⊆ T?

Definition (Regular Tree Types)
A tree type S is a subtree of a tree type T if S = λσ. T(π,σ) for some π.
A tree type T is regular if subtrees(T) is finite.

LEMMA
Every µ-type T ∈ Tm corresponds to a regular tree type treeof (T).

Design Principles of Programming Languages, Spring 2023 22



Regularity
Example (µX.Top×X <: µX.Top× (Top×X))
Let S def

= µX.Top×X and T
def
= µX.Top× (Top×X).

Top <: Top

Top <: Top

...
S <: T

Top× S <: Top× T

S <: Top× T

Top× S <: Top× (Top× T)

Top× S <: T

S <: T

Observation (Finite-State)
To check the subtype relation S <: T between µ-types S and T , the set of reachable states S ′ <: T ′ is finite.

Design Principles of Programming Languages, Spring 2023 23



Hypothetical Subtyping
Σ ` S <: T : “one can derive S <: T by assuming the subtype relations in Σ”

(S <: T) ∈ Σ

Σ ` S <: T Σ ` S <: Top
Σ ` T1 <: S1 Σ ` S2 <: T2

Σ ` S1 → S2 <: T1 → T2

Σ ` S1 <: T1 Σ ` S2 <: T2

Σ ` S1 × S2 <: T1 × T2

Σ,S <: µX.T ` S <: [X 7→ µX.T ]T
Σ ` S <: µX.T

Σ,µX.S <: T ` [X 7→ µX.S]S <: T

Σ ` µX.S <: T

Let S def
= µX.Top×X and T

def
= µX.Top× (Top×X).

. . . ` Top <: Top

. . . ` Top <: Top S <: T , . . . ` S <: T

S <: T , . . . ` Top× S <: Top× T

S <: T , . . . ` S <: Top× T

S <: T , . . . ` Top× S <: Top× (Top× T)

S <: T ` Top× S <: T

∅ ` S <: T

Design Principles of Programming Languages, Spring 2023 24



Hypothetical Subtyping

Remark
The hypothetical subtyping Σ ` S <: T corresponds to the subtypeac algorithm presented in Chapter 21.10.

THEOREM
Let (S, T) ∈ Tm × Tm. Then ∅ ` S <: T if and only if (S, T) ∈ νSd.

Proof Sketch
• To prove “∅ ` S <: T imples (S, T) ∈ νSd,” we can apply Lemma 21.6.5(2).
• To prove “(S, T) ∈ νSd implies ∅ ` S <: T ,” we first turn to prove “Σ ` S /<: T implies (S, T) 6∈ νSd.” We can

apply Lemma 21.5.8 in this part.
• It suffices to show either Σ ` S <: T or Σ ` S /<: T . This part is related to regularity (or finite-state) and is

discussed in Chapter 21.9.

Design Principles of Programming Languages, Spring 2023 25



A Little More Details

Remark
We have been using Sd, but the textbook mostly uses Sm defined as follows:

Sm(R)
def
= {(S, Top) | T ∈ Tm}

∪ {(S1 → S2, T1 → T2) | (T1,S1), (S2, T2) ∈ R}

∪ {(S1 × S2, T1 × T2) | (S1, T1), (S2, T2) ∈ R}

∪ {(S,µX.T) | (S, [X 7→ µX.T ]T) ∈ R}

∪ {(µX.S, T) | ([X 7→ µX.S]S, T) ∈ R, T 6= Top, T 6= µY.T1}.

Observation
If we think Sm in terms of inference rules, it is algorithmic but Sd is not.

Design Principles of Programming Languages, Spring 2023 26



A Little More Details
Definition (Invertible Generating Functions)
A generating function F is said to be invertible if, for all x ∈ U, the collection of sets Gx = {X ⊆ U | x ∈ F(X)}

either is empty or contains a unique member that is a subset of all the others. When F is invertible, we define:

supportF(x)
def
=

{
X if X ∈ Gx and ∀X ′ ∈ Gx. X ⊆ X ′

↑ if Gx = ∅

Example
supportF(x) essentially inverts the unique inference rule for x under F.

supportSm
(S, T) def

=



∅ if T = Top
{(T1,S1), (S2, T2)} if S = S1 → S2 and T = T1 → T2
{(S1, T1), (S2, T2)} if S = S1 × S2 and T = T1 × T2
{(S, [X 7→ µX.T ]T)} if T = µX.T
{([X 7→ µX.S]S, T)} if S = µX.S and T 6= Top, T 6= µY.T1
↑ otherwise

Design Principles of Programming Languages, Spring 2023 27



A Little More Details

A General Algorithm that Corresponds to Σ ` S <: T

Given an invertible generating function F, define the function gfpac
F as follows:

gfpac
F (A, x) = if x ∈ A, then true

else if supportF(x)↑, then false
else

let {x1, . . . , xn} = supportF(x) in
let A0 = A∪ {x} in
gfpac

F (A0, x1) and
gfpac

F (A0, x2) and
…
gfpac

F (A0, xn).
The Σ ` S <: T system corresponds to gfpac

Sm
(Σ, (S, T)).

Design Principles of Programming Languages, Spring 2023 28



A Little More Details
See Chapter 21.10 for an example that shows gfpac

Sm
is an exponential algorithm.

A Better Algorithm
Given an invertible generating function F, define the function gfptF as follows:

gfptF(A, x) = if x ∈ A, then A

else if supportF(x)↑, then fail
else

let {x1, . . . , xn} = supportF(x) in
let A0 = A∪ {x} in
let A1 = gfptF(A0, x1) in
…
let An = gfptF(An−1, xn) in
An.

Design Principles of Programming Languages, Spring 2023 29



Summary

Metatheory of Recursive Types
We have studied the theoretical foundation of type checkers (subtyping) for equi-recursive types.

• Finite & infinite types
• Induction & coinduction & their proof principles
• Subtyping
• Membership-checking algorithm

Design Principles of Programming Languages, Spring 2023 30



Homework

Question (Exercise 21.5.2)
Verify that Sf and S, the generating functions for the subtyping relations from Definitions 21.3.1 and 21.3.2, are
invertible, and give their support functions.

Design Principles of Programming Languages, Spring 2023 31


