wiTIE S Bt RIE
Design Principles of
Programming Languages

Haiyan Zhao, Di Wang
X, @

Peking University, Spring Term 2023

Chap21: Metatheory of Recursive Types

Finite & Infinite Types
Induction & Coinduction
Subtyping
Membership Checking

Can we deduce the relation below, given that Even <: Nat?

uX.Nat — (Even x X) <: uX.Even — (Nat x X)

8
//,/"/_ - -
— ___:_>:__f:<:__§_‘ =
Nat x oS Si Bven X
Even 72 SNt 7T
N TN
Nat x ___<_:_::<_:_|5_va .
//B\":’// \“\;/‘\
Even Nat

PRINCIPLE

We need to develop a metatheory of subtyping on infinite tree types.

Finite & Infinite Types

Tree Types

For brevity, we only consider three type constructors: —, x, and Top.

To=Top|T—>T|TxT

Atree type is a partial function T : {1, 2}* — {—, x, Top} satisfying the following constraints:
® T(e)isdefined;
e ifT(m, o) is defined then T(7t) is defined,;
® ifT(m) = —orT(m) = x thenT(7, 1) and T(7, 2) are defined;
e ifT(7t) = Topthen T(7, 1) and T(7, 2) are undefined.

Tree Types

(Top x Top) — Top
4)
VN
X Top

X

Top Top

Atree type T is finite if dom(T) is finite.

Top — (Top — (Top — ...))
N
7N
Top Vﬁ\)

Top

The set of all tree types is written T; the subset of all finite tree types is written T.

How to characterize Tand T¢?

Induction & Coinduction

Review: Induction

By Inference Rules

Tt is the least set of tree types defined by the following rules:
Ty € T¢ T, € T¢ Ty € T¢ T, € T¢
Top € T¢ T =T, € Ty Ty xT, € T¢

By Union of Sets

‘J'OdZEf@

T EToplU(T = T2 | Ty, T, € TIUM x T2 | Ty, Tz € T3}

TEUn
i

def

LetF(X) = {TOD}U{T] — T | T, T, € X}U{T] x To | T, T, € X}. Then Te = Ui Fi(g).
How to characterize the function F?

Generating Functions

A Universal Set U

U represents “everything in the world”

A generating functionis a function F : P(U) — P(U) thatis monotone, i.e., X C Yimplies F(X) C F(Y).

Let F be monotone, and X be a subset of U.
® XisF-closedif F(X) C X.
® XisF-consistentif X C F(X).
® Xisa fixed pointof Fif F(X) = X.

Example
def

Recall F(X) = {Top}U{T; = To | T;, T2 € X}U{Ty x T | T1, T> € X}. Then Tt is a fixed point of F.
Is T¢ the only fixed point?

Knaster-Tarski Theorem

THEOREM
® Theintersection of all F-closed sets is the least fixed point of F, written p.F.

® The union of all F-consistent sets is the greatest fixed point of F, written vF.

o
(on
o

Whatare uE; and vEq?

Recall F(X) € {Top) U{Ty = T, I T, T2 e XJU(Ty x T2 | Ty, T2 € X}
What are the least and greatest fixed points of F?

uF = TJ5 vE=T

Principles of Induction & Coinduction

PRINCIPLE (INDUCTION)
If Xis F-closed (i.e., F(X) C X), then uF C X.

Remark

Any property whose characteristic set is closed under Fis true of all elements of the inductively defined set uF.

PRINCIPLE (COINDUCTION)
If X is F-consistent (i.e., X C F(X)), then X C vF.

Remark

The coinduction principle is a method for establishing that an element x is in the coinductively defined set vF.

Subtyping

Finite Subtyping
By Inference Rules

Ty <S4 S < Ty S1 < Ty S < T
T<:T0p S]—>Sz<:T1—>T2 S]><32<:T1><T2

By a Generating Function

Two finite tree types S and T are in the subtype relation (“S is a subtype of T”) if (S, T) € uS¢, where the
monotone function
St € P(Te x Te) — P(Te x Ts)
is defined by
S¢(R) € {(T, Top) | T € Tg}

U{(S1 = S2,T1 = T2) [(Tq,$1),(S2, T2) € R}
U{(S1 x 82, T1 xT2) [(S1,T1), (S2, T2) € R}

Infinite Subtyping

By Inference Rules

Ty <t §q S, <ty S1 <t T Sy <y
T <: Top S1—2S<T =T, S1 xS <y xT,

The same set of rules, but interpreted coinductively!

By a Generating Function

Two (finite or infinite) tree types S and T are in the subtype relation (“S is a subtype of T") if (S, T) € vS, where
the monotone function

SeP(TxT)—=PTxT)
is defined by

S(R) ¥ {(T,Top) | T T}

U{(S1 = S2,T1 = T2) [(Tq,S51),(S2, T2) € R}
U{(S1 xS2, Ts xT2) | (S1,Tq),(S2, T2) € RL

Exercises

Check that vS is not the whole of T x T by exhibiting a pair (S, T) thatis notin vS.

Is there a pair of types (S, T) that is related by vS, but not by uS?
What about a pair of types (S, T) thatis related by vS¢, but not by uS¢?

Transitivity

Arelation R C U x U is transitive if R is closed under the monotone function

TR(R) €{(x,y) | Iz € U. (x,2), (z,y) € R},
ie,ifTR(R) CR.

THEOREM

vS is transitive.

LEMmA

LetF € P(U x U) — P(U x U) be a monotone function.
If TR(F(R)) C F(TR(R)) foranyR C U x U, then vF is transitive.

Membership Checking

How to check S <: T algorithmically?

u-Types

Let X range over a fixed countable set{X7, X3, ...} of type variables. The set of raw pi-types is the set of
expressions defined by the following grammar (inductively):

Tao=X|Top|T—=T|TxT|uX.T

Araw p-type T is contractive (and called a i-type) if, for any subexpression of T of the form uX;.uXs. ... uXy.S,
the body S is not X.

The set of p-types is written 7, .

What s the relation between T, and T (the set of tree types)?

Finite Notation for (Some) (Possibly-)Infinite Tree Types

The function treeof , mapping closed p-types to tree types, is defined inductively as follows:

def

treeof (Top)(e) = Top

def

treeof (T; — Ta)(e) = — treeof (Ty — T2)(1,) &f treeof (T;) (m)
treeof (T x T2)(e) e treeof (Ty x T2)(i,) &f treeof (T;)(7)

treeof (WX.T)(m) & treeof (X — pX.TIT)(n)

Why is treeof well-defined?

Answer

Every recursive use of treeof on the right-hand side reduces the lexicographic size of the pair (|7t], i-/eight(T)).

treeof (uX.((X x Top) — X))

RS

7 \ y k)

T
/\ : :

Top

Subtyping on pu-Types
u-Folding Rules

S < [X+—= puX.TIT X uXSIS<:T
S < uX.T uX.S<: T

Inductive or coinductive?

By a Generating Function
Two p-types S and T are said to be in the subtype relation if (S, T) € vS 4, where the monotone function
Sq € P(Tim X Tm) — P(Tin X T is defined by

def

Sa(R) ={(S,Top) | T € Tm}

U{(S1 = 82,1 = T2) [(T7,51),(S2, T2) € R}
U{(S1 xS2, Ty xT2) | (S1,T1), (S2, T2) € R}
U{(S, kX.T) | (S, X = uX.TIT) € R}
U{(X.S, T) | (X = uX.SIS, T) € R).

Subtyping Correspondence: pi-Types and Tree Types

THEOREM
Let (S, T) € Tm x Tm. Then (S, T) € vSq ifand onlyif (treeof (S), treeof (T)) € vS.

How to characterize the subset treeof (T) C T?

Atree type Sisasubtree ofatreetype Tif S = Ao. T(m, o) for some 7.
Atree type T is regular if subtrees(T) is finite.

LEMmMA

Every u-type T € Ty, corresponds to a regular tree type treeof (T).

Regularity

Example (uX.Top x X <: uX.Top x (Top x X))

def def

LetS = uX.Top x Xand T = puX.Top x (Top x X).

Top <: Top S<T
TopxS<:TopxT
Top <: Top S<:TopxT
Top x S <:Top x (Top x T)
TopxS<:T
S<:T

To check the subtype relation S <: T between p-types S and T, the set of reachable states S’ <: T’ is finite.

Hypothetical Subtyping

L+ S <:T:“onecanderive S <: T by assuming the subtype relationsin £~

(S<:T)ekX SETy < $ YES < T SES < T SES < T,
IES<T ZFS<ZTOD IES1—>S<Ti—T 2ES1 xS < Ty xTy
IS < uXTES < [X— uXTIT LuXS < TH[X—=uXSIS<:T
TES < uXT TFuXS<T

LetS & uX.Top x Xand T & uX.Top x (Top x X).

... Top <:Top S<:T,...-S<T
S<T,...-TopxS<:TopxT
...FTop<:Top S<:T,...0S<:TopxT
S<:T,...TopxS<:Topx (Top xT)
S<:THTopxS<:T
oFS<T

Hypothetical Subtyping

Remark

The hypothetical subtyping £ - S <: T corresponds to the subtype™ algorithm presented in Chapter 21.10.

THEOREM
Let (S, T) € Tm X Tm. Then@ S <: Tifandonlyif (S, T) € vSq4.

Proof Sketch

® Toprove ‘@ S <: Timples (S, T) € vSq,” we can apply Lemma 21.6.5(2).

® Toprove“(S,T) € vSqimplies@ - S <: T,”we firstturnto prove “X = S <£: Timplies (S, T) & vS4q.” We can
apply Lemma 21.5.8 in this part.

e |tsufficestoshoweitherZ =S <: TorZ S «: T. This partis related to regularity (or finite-state) and is
discussed in Chapter 21.9.

A Little More Details

Remark

We have been using S 4, but the textbook mostly uses S, defined as follows:

def

Sm(R) ={(S,Top) | T € T}
U{(S1 = 82,1 = T2) [(T7,51),(S2, T2) € R}
U{(S1 xS2, Ty xT2) [(S1,Tq), (82, T2) € R}
U{(S, uX.T) | (S, X — uX.TIT) € R}
U{(X.S, T) | (IX — pX.SIS, T) € R, T # Top, T # uY.Ti}.

If we think S, in terms of inference rules, it is algorithmic but S 4 is not.

A Little More Details

A generating function Fis said to be invertible if, forall x € U, the collection of sets Gx ={X C U | x € F(X)}
either is empty or contains a unique member that is a subset of all the others. When Fis invertible, we define:

X ifXe GyandVvX’' € Gx. X C X’

Example

support, (x) essentially inverts the unique inference rule for x under F.

[] if T=Top
{(T] S]) (Sz,Tz)} ifS=S1 —)Sz andT:T1 —)Tz
def {(51 T]) (Sz Tz)} ifS:S1 szandT:ﬂ XTZ
supports (S, T) =14 1(s X o pX TIT)} ifT = uX.T
{(X > pX.SIS, T)} ifS = uX.SandT # Top, T # uY.T;
otherwise

A Little More Details

A Ceneral Algorithm that Correspondsto L - S <: T

Given an invertible generating function F, define the function gfpf as follows:

“(A,x) = ifx €A, thentrue
elseif support (x)7, then false
else
let{x1,..., Xn} = supporty(x) in

letAg = AU{x}in

gfr¥ (Ao, x1)and

gfp?:c(Ao, Xz) and
LIZZC(AOV XTL)'

The Z I S <: T system corresponds togb‘écm(}:, (S, 7).

A Little More Details

See Chapter 21.10 for an example that shows gfp’ is an exponential algorithm.

A Better Algorithm
Given an invertible generating function F, define the function gfpy as follows:
gfpE(A,x) = ifx €A, thenA
else if support (x)?, then fail
else
let{x1,..., Xn} = supporty(x) in
letAg = AU{x}in
let Aq :gfp;ﬁ(Ao,x])in

let Ay = ng;EE(Anf1 ,Xn) in
Mo

Summary

Metatheory of Recursive Types

We have studied the theoretical foundation of type checkers (subtyping) for equi-recursive types.
® Finite & infinite types
¢ Induction & coinduction & their proof principles
® Subtyping
® Membership-checking algorithm

Homework

Verify that Sy and S, the generating functions for the subtyping relations from Definitions 21.3.1and 21.3.2, are
invertible, and give their support functions.

