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Chap 21: Metatheory of Recursive Types

Finite & Infinite Types
Induction & Coinduction

Subtyping
Membership Checking
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Can we deduce the relation below, given that Even <: Nat?

µX.Nat → (Even×X) <: µX.Even → (Nat×X)

→

Nat ×

Even →

Nat ×

Even ...

→

Even ×

Nat →

Even ×

Nat ...

<:

:> <:

<: <:

:> <:

<: <:

PRINCIPLE
We need to develop a metatheory of subtyping on infinite tree types.
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Finite & Infinite Types
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Tree Types

For brevity, we only consider three type constructors: →, ×, and Top.

T ::= Top | T → T | T × T

Definition
A tree type is a partial function T : {1, 2}∗ ⇀ {→,×, Top} satisfying the following constraints:

• T(•) is defined;
• if T(π,σ) is defined then T(π) is defined;
• if T(π) = → or T(π) = × then T(π, 1) and T(π, 2) are defined;
• if T(π) = Top then T(π, 1) and T(π, 2) are undefined.
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Tree Types
(Top× Top) → Top

→

× Top

Top Top

1 2

1 2

Top → (Top → (Top → . . .))

→

Top →

Top →

Top ...

1 2

1 2

1 2

Definition
A tree type T is finite if dom(T) is finite.
The set of all tree types is written T; the subset of all finite tree types is written Tf.

Question
How to characterize T and Tf?
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Induction & Coinduction
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Review: Induction
By Inference Rules
Tf is the least set of tree types defined by the following rules:

Top ∈ Tf

T1 ∈ Tf T2 ∈ Tf

T1 → T2 ∈ Tf

T1 ∈ Tf T2 ∈ Tf

T1 × T2 ∈ Tf

By Union of Sets

T0
def
= ∅

Ti+1
def
= {Top}∪ {T1 → T2 | T1, T2 ∈ Ti}∪ {T1 × T2 | T1, T2 ∈ Ti}

Tf
def
=

∪
i

Ti

Let F(X) def
= {Top}∪ {T1 → T2 | T1, T2 ∈ X}∪ {T1 × T2 | T1, T2 ∈ X}. Then Tf =

∪
i F

i(∅).
How to characterize the function F?
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Generating Functions
A Universal Set U
U represents “everything in the world.”

Definition (Generating Functions)
A generating function is a function F : P(U) → P(U) that is monotone, i.e., X ⊆ Y implies F(X) ⊆ F(Y).

Let F be monotone, and X be a subset of U.
• X is F-closed if F(X) ⊆ X.
• X is F-consistent if X ⊆ F(X).
• X is a fixed point of F if F(X) = X.

Example
Recall F(X) def

= {Top}∪ {T1 → T2 | T1, T2 ∈ X}∪ {T1 × T2 | T1, T2 ∈ X}. Then Tf is a fixed point of F.
IsTf the only fixed point?
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Knaster-Tarski Theorem
THEOREM

• The intersection of all F-closed sets is the least fixed point of F, written µF.
• The union of all F-consistent sets is the greatest fixed point of F, written νF.

Question

c

c

b

b c

a

What are µE1 and νE1?

Question
Recall F(X) def

= {Top}∪ {T1 → T2 | T1, T2 ∈ X}∪ {T1 × T2 | T1, T2 ∈ X}.
What are the least and greatest fixed points of F?

µF = Tf νF = T
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Principles of Induction & Coinduction

PRINCIPLE (INDUCTION)
If X is F-closed (i.e., F(X) ⊆ X), then µF ⊆ X.

Remark
Any property whose characteristic set is closed under F is true of all elements of the inductively defined set µF.

PRINCIPLE (COINDUCTION)
If X is F-consistent (i.e., X ⊆ F(X)), then X ⊆ νF.

Remark
The coinduction principle is a method for establishing that an element x is in the coinductively defined set νF.
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Subtyping
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Finite Subtyping
By Inference Rules

T <: Top
T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

S1 <: T1 S2 <: T2

S1 × S2 <: T1 × T2

By a Generating Function
Two finite tree types S and T are in the subtype relation (“S is a subtype of T ”) if (S, T) ∈ µSf, where the
monotone function

Sf ∈ P(Tf × Tf) → P(Tf × Tf)

is defined by

Sf(R)
def
= {(T , Top) | T ∈ Tf}

∪ {(S1 → S2, T1 → T2) | (T1,S1), (S2, T2) ∈ R}

∪ {(S1 × S2, T1 × T2) | (S1, T1), (S2, T2) ∈ R}.
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Infinite Subtyping
By Inference Rules

T <: Top
T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

S1 <: T1 S2 <: T2

S1 × S2 <: T1 × T2

The same set of rules, but interpreted coinductively!

By a Generating Function
Two (finite or infinite) tree types S and T are in the subtype relation (“S is a subtype of T ”) if (S, T) ∈ νS, where
the monotone function

S ∈ P(T × T) → P(T × T)

is defined by

S(R)
def
= {(T , Top) | T ∈ T}

∪ {(S1 → S2, T1 → T2) | (T1,S1), (S2, T2) ∈ R}

∪ {(S1 × S2, T1 × T2) | (S1, T1), (S2, T2) ∈ R}.
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Exercises

Question (Exercise 21.3.3)
Check that νS is not the whole of T × T by exhibiting a pair (S, T) that is not in νS.

Question (Exercise 21.3.4)
Is there a pair of types (S, T) that is related by νS, but not by µS?
What about a pair of types (S, T) that is related by νSf, but not by µSf?
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Transitivity

Definition
A relation R ⊆ U×U is transitive if R is closed under the monotone function

TR(R)
def
= {(x,y) | ∃z ∈ U. (x, z), (z,y) ∈ R},

i.e., if TR(R) ⊆ R.

THEOREM
νS is transitive.

LEMMA
Let F ∈ P(U×U) → P(U×U) be a monotone function.
If TR(F(R)) ⊆ F(TR(R)) for any R ⊆ U×U, then νF is transitive.
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Membership Checking
How to check S <: T algorithmically?
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µ-Types
Definition
Let X range over a fixed countable set {X1,X2, . . .} of type variables. The set of rawµ-types is the set of
expressions defined by the following grammar (inductively):

T ::= X | Top | T → T | T × T | µX.T

Definition
A raw µ-type T is contractive (and called a µ-type) if, for any subexpression of T of the form µX1.µX2. . . . µXn.S,
the body S is not X.

The set of µ-types is written Tm.

Question
What is the relation between Tm and T (the set of tree types)?
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Finite Notation for (Some) (Possibly-)Infinite Tree Types
The function treeof , mapping closed µ-types to tree types, is defined inductively as follows:

treeof (Top)(•) def
= Top

treeof (T1 → T2)(•)
def
= → treeof (T1 → T2)(i,π)

def
= treeof (Ti)(π)

treeof (T1 × T2)(•)
def
= × treeof (T1 × T2)(i,π)

def
= treeof (Ti)(π)

treeof (µX.T)(π) def
= treeof ([X 7→ µX.T ]T)(π)

Question
Why is treeof well-defined?

Answer
Every recursive use of treeof on the right-hand side reduces the lexicographic size of the pair (|π|,µ-height(T)).
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treeof (µX.((X× Top) → X))

→

×

→ Top

× ...

...
Top

→

× ...

...
Top

1

1 2

1 2
1 2

2

1 2

1

2
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Subtyping onµ-Types
µ-Folding Rules

S <: [X 7→ µX.T ]T
S <: µX.T

[X 7→ µX.S]S <: T

µX.S <: T

Inductive or coinductive?

By a Generating Function
Two µ-types S and T are said to be in the subtype relation if (S, T) ∈ νSd, where the monotone function
Sd ∈ P(Tm × Tm) → P(Tm × Tm) is defined by

Sd(R)
def
= {(S, Top) | T ∈ Tm}

∪ {(S1 → S2, T1 → T2) | (T1,S1), (S2, T2) ∈ R}

∪ {(S1 × S2, T1 × T2) | (S1, T1), (S2, T2) ∈ R}

∪ {(S,µX.T) | (S, [X 7→ µX.T ]T) ∈ R}

∪ {(µX.S, T) | ([X 7→ µX.S]S, T) ∈ R}.
Design Principles of Programming Languages, Spring 2023 21



Subtyping Correspondence: µ-Types and Tree Types
THEOREM
Let (S, T) ∈ Tm × Tm. Then (S, T) ∈ νSd if and only if (treeof (S), treeof (T)) ∈ νS.

Question
How to characterize the subset treeof (Tm) ⊆ T?

Definition (Regular Tree Types)
A tree type S is a subtree of a tree type T if S = λσ. T(π,σ) for some π.
A tree type T is regular if subtrees(T) is finite.

LEMMA
Every µ-type T ∈ Tm corresponds to a regular tree type treeof (T).
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Regularity
Example (µX.Top×X <: µX.Top× (Top×X))
Let S def

= µX.Top×X and T
def
= µX.Top× (Top×X).

Top <: Top

Top <: Top

...
S <: T

Top× S <: Top× T

S <: Top× T

Top× S <: Top× (Top× T)

Top× S <: T

S <: T

Observation (Finite-State)
To check the subtype relation S <: T between µ-types S and T , the set of reachable states S ′ <: T ′ is finite.
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Hypothetical Subtyping
Σ ` S <: T : “one can derive S <: T by assuming the subtype relations in Σ”

(S <: T) ∈ Σ

Σ ` S <: T Σ ` S <: Top
Σ ` T1 <: S1 Σ ` S2 <: T2

Σ ` S1 → S2 <: T1 → T2

Σ ` S1 <: T1 Σ ` S2 <: T2

Σ ` S1 × S2 <: T1 × T2

Σ,S <: µX.T ` S <: [X 7→ µX.T ]T
Σ ` S <: µX.T

Σ,µX.S <: T ` [X 7→ µX.S]S <: T

Σ ` µX.S <: T

Let S def
= µX.Top×X and T

def
= µX.Top× (Top×X).

. . . ` Top <: Top

. . . ` Top <: Top S <: T , . . . ` S <: T

S <: T , . . . ` Top× S <: Top× T

S <: T , . . . ` S <: Top× T

S <: T , . . . ` Top× S <: Top× (Top× T)

S <: T ` Top× S <: T

∅ ` S <: T
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Hypothetical Subtyping

Remark
The hypothetical subtyping Σ ` S <: T corresponds to the subtypeac algorithm presented in Chapter 21.10.

THEOREM
Let (S, T) ∈ Tm × Tm. Then ∅ ` S <: T if and only if (S, T) ∈ νSd.

Proof Sketch
• To prove “∅ ` S <: T imples (S, T) ∈ νSd,” we can apply Lemma 21.6.5(2).
• To prove “(S, T) ∈ νSd implies ∅ ` S <: T ,” we first turn to prove “Σ ` S /<: T implies (S, T) 6∈ νSd.” We can

apply Lemma 21.5.8 in this part.
• It suffices to show either Σ ` S <: T or Σ ` S /<: T . This part is related to regularity (or finite-state) and is

discussed in Chapter 21.9.
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A Little More Details

Remark
We have been using Sd, but the textbook mostly uses Sm defined as follows:

Sm(R)
def
= {(S, Top) | T ∈ Tm}

∪ {(S1 → S2, T1 → T2) | (T1,S1), (S2, T2) ∈ R}

∪ {(S1 × S2, T1 × T2) | (S1, T1), (S2, T2) ∈ R}

∪ {(S,µX.T) | (S, [X 7→ µX.T ]T) ∈ R}

∪ {(µX.S, T) | ([X 7→ µX.S]S, T) ∈ R, T 6= Top, T 6= µY.T1}.

Observation
If we think Sm in terms of inference rules, it is algorithmic but Sd is not.
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A Little More Details
Definition (Invertible Generating Functions)
A generating function F is said to be invertible if, for all x ∈ U, the collection of sets Gx = {X ⊆ U | x ∈ F(X)}

either is empty or contains a unique member that is a subset of all the others. When F is invertible, we define:

supportF(x)
def
=

{
X if X ∈ Gx and ∀X ′ ∈ Gx. X ⊆ X ′

↑ if Gx = ∅

Example
supportF(x) essentially inverts the unique inference rule for x under F.

supportSm
(S, T) def

=



∅ if T = Top
{(T1,S1), (S2, T2)} if S = S1 → S2 and T = T1 → T2
{(S1, T1), (S2, T2)} if S = S1 × S2 and T = T1 × T2
{(S, [X 7→ µX.T ]T)} if T = µX.T
{([X 7→ µX.S]S, T)} if S = µX.S and T 6= Top, T 6= µY.T1
↑ otherwise
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A Little More Details

A General Algorithm that Corresponds to Σ ` S <: T

Given an invertible generating function F, define the function gfpac
F as follows:

gfpac
F (A, x) = if x ∈ A, then true

else if supportF(x)↑, then false
else

let {x1, . . . , xn} = supportF(x) in
let A0 = A∪ {x} in
gfpac

F (A0, x1) and
gfpac

F (A0, x2) and
…
gfpac

F (A0, xn).
The Σ ` S <: T system corresponds to gfpac

Sm
(Σ, (S, T)).
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A Little More Details
See Chapter 21.10 for an example that shows gfpac

Sm
is an exponential algorithm.

A Better Algorithm
Given an invertible generating function F, define the function gfptF as follows:

gfptF(A, x) = if x ∈ A, then A

else if supportF(x)↑, then fail
else

let {x1, . . . , xn} = supportF(x) in
let A0 = A∪ {x} in
let A1 = gfptF(A0, x1) in
…
let An = gfptF(An−1, xn) in
An.
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Summary

Metatheory of Recursive Types
We have studied the theoretical foundation of type checkers (subtyping) for equi-recursive types.

• Finite & infinite types
• Induction & coinduction & their proof principles
• Subtyping
• Membership-checking algorithm
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Homework

Question (Exercise 21.5.2)
Verify that Sf and S, the generating functions for the subtyping relations from Definitions 21.3.1 and 21.3.2, are
invertible, and give their support functions.
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