
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang
赵海燕，王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 2023 1

Chap 22: Type Reconstruction

Formulation
Constraint-Based Typing

Unification & Principal Types
Extension with Let-Polymorphism

Design Principles of Programming Languages, Spring 2023 2

Recall: Erasure & Type Reconstruction

erase(x) def
= x

erase(λx:T1. t2)
def
= λx. erase(t2)

erase(t1 t2)
def
= erase(t1) erase(t2)

erase(λX. t2)
def
= erase(t2)

erase(t1 [T2])
def
= erase(t1)

Definition (Type Reconstruction)
Given an untyped term m, whether we can find some well-typed term t such that erase(t) = m.

Design Principles of Programming Languages, Spring 2023 3

Recall: Prenex Polymorphism

Prenex Polymorphism

• Type variables range only over quantifier-free types (monotypes).
• Quantified types (polytypes) are not allows to appear on the left-hand sides of arrows.

Remark
Type reconstruction for prenex polymorphism is decidable!

In This Chapter

• We first develop a type-reconstruction algorithm for simply-typed lambda-calculus.
• We then consider a variant of prenex polymorphism named let-polymorphism.

Design Principles of Programming Languages, Spring 2023 4

Formulation

Design Principles of Programming Languages, Spring 2023 5

Simply-Typed Lambda-Calculus with Type Variables

Syntax

t ::= x | λx:T . t | t t | . . .
v ::= λx:T . t | . . .
T ::= X | T → T | . . .

Γ ::= ∅ | Γ , x : T

Typing

x : T ∈ Γ

Γ ` x : T
T-VAR

Γ , x : T1 ` t2 : T2

Γ ` λx:T1. t2 : T1 → T2
T-ABS

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
T-APP

Design Principles of Programming Languages, Spring 2023 6

Type Substitutions

Definition
A type substitution is a finite mapping from type variables to types.

Example
We define σ def

= [X 7→ Bool, Y 7→ U] for the substitution that maps X to Bool and Y to U.
We write dom(·) for left-hand sides of pairs in a substitution, e.g., dom(σ) = {X, Y}.
We write range(·) for the right-hand sides of pairs in a substitution, e.g., range(σ) = {Bool,U}.

Remark
The pairs of a substitution are applied simultaneously.
For example, [X 7→ Bool, Y 7→ X → X] maps Y to X → X, not Bool → Bool.

Design Principles of Programming Languages, Spring 2023 7

Type Substitutions

Application of a Substitution to Types

σ(X)
def
=

{
T if (X 7→ T) ∈ σ

X if X is not in the domain of σ

σ(Nat) def
= Nat

σ(Bool) def
= Bool

σ(T1 → T2)
def
= σ(T1) → σ(T2)

Composition of Substitutions

σ ◦ γ def
=

[
X 7→ σ(T) for each (X 7→ T) ∈ γ

X 7→ T for each (X 7→ T) ∈ σ with X 6∈ dom(γ)

]

Design Principles of Programming Languages, Spring 2023 8

Type Substitutions
Application of a Substitution to Contexts

σ(x1 : T1, . . . , xn : Tn)
def
= (x1 : σ(T1), . . . , xn : σ(Tn))

Application of a Substitution to Terms

σ(x)
def
= x

σ(λx:T1. t2)
def
= λx:σ(T1).σ(t2)

σ(t1 t2)
def
= σ(t1)σ(t2)

THEOREM (PRESERVATION OF TYPING UNDER A SUBSTITUTION)
If σ is any type substitution and Γ ` t : T , then σ(Γ) ` σ(t) : σ(T).

Design Principles of Programming Languages, Spring 2023 9

Type Reconstruction
Definition (Type Reconstruction in terms of Substitutions)
Let Γ be a context and t be a term. A solution for (Γ , t) is a pair (σ, T) such that σ(Γ) ` σ(t) : T .

Remark (Two Views ofσ(Γ) ` σ(t) : T)

• Type reconstruction: does there exist someσ such that σ(Γ) ` σ(t) : T for some T ?
• Another view: for everyσ, do we have σ(Γ) ` σ(t) : T for some T ?

• This corresponds to parametric polymorphism, e.g., ∅ ` λf:X → X. λa:X. f (f a) : (X → X) → X → X.

Example
Let Γ def

= f : X,a : Y and t
def
= f a. Below gives some solutions for (Γ , t):

σ T σ T

[X 7→ Y → Nat] Nat [X 7→ Y → Z] Z
[x 7→ Y → Z,Z 7→ Nat] Z [X 7→ Y → Nat → Nat] Nat → Nat
[X 7→ Nat → Nat, Y 7→ Nat] Nat

Design Principles of Programming Languages, Spring 2023 10

Erasure (revisited)

erase(x) def
= x

erase(λx:T1. t2)
def
= λx. erase(t2)

erase(t1 t2)
def
= erase(t1) erase(t2)

Definition (Type Reconstruction)
Let Γ be a context and m be an untyped term. A solution for (Γ ,m) is a substitution (σ, T) such that σ(Γ) ` m : T .

x : T ∈ Γ

Γ ` x : T
T-VAR

Γ , x : T1 ` t2 : T2

Γ ` λx. t2 : T1 → T2
T-ABS

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
T-APP

Given the derivation, it is trivial to construct a well-typed term t such that erase(t) = m.

Design Principles of Programming Languages, Spring 2023 11

Constraint-Based Typing

Design Principles of Programming Languages, Spring 2023 12

Constraint Typing
Definition
A constraint set C is a set of equations {Si = Ti

1...n} where Si’s and Ti’s are types.

Γ ` t : T |X C: “term t has type T under context Γ whenever constraints C are satisfied”

x : T ∈ Γ

Γ ` x : T |∅ {}
CT-VAR

Γ , x : T1 ` t2 : T2 |X C
Γ ` λx:T1. t2 : T1 → T2 |X C

CT-ABS

Γ ` t1 : T1 |X1
C1 Γ ` t2 : T2 |X2

C2 X1 ∩X2 = X1 ∩ FV(T2) = X2 ∩ FV(T1) = ∅
X 6∈ X1,X2, T1, T2, C1, C2, Γ , t1, t2 C ′ = C1 ∪ C2 ∪ {T1 = T2 → X}

Γ ` t1 t2 : X |X1∪X2∪{X} C ′ CT-APP

The set X is used to track new type variables introduced in each subderivation.

Question (Exercise 22.3.3)
Construct a constraint typing derivation for λx:X. λy:Y. λz:Z. (x z) (y z).
Design Principles of Programming Languages, Spring 2023 13

Solutions for Constraint Typing

Definition
A substitution σ is said to unify an equation S = T if σ(S) = σ(T).
We say that σ unifies a constraint set C if it unifies every equation in C.

Definition
Suppose that Γ ` t : S | C. A solution for (Γ , t,S, C) is a pair (σ, T) such that σ unified C and σ(S) = T .

Remark
Recall that a solution for (Γ , t) is a pair (σ, T) such that σ(Γ) ` σ(t) : T .
What are the relation between the two definitions of solutions for type reconstruction?

Design Principles of Programming Languages, Spring 2023 14

Properties of Constraint Typing
THEOREM (SOUNDNESS)
Suppose that Γ ` t : S | C. If (σ, T) is a solution for (Γ , t,S, C), then it is also a solution for (Γ , t).

Proof Sketch
By induction on the derivation of constraint typing.

THEOREM (COMPLETENESS)
Suppose Γ ` t : S |X C. If (σ, T) is a solution for (Γ , t) and dom(σ)∩X = ∅, then there is some solution (σ ′, T)
for (Γ , t,S, C) such that σ ′ \ X = σ.

Proof Sketch
By induction on the derivation of constraint typing.

Design Principles of Programming Languages, Spring 2023 15

Unification & Principal Types
Find a Most General Substitution σ that Unifies a Constraint Set C

Design Principles of Programming Languages, Spring 2023 16

Unification
Remark
Hindley (1969)1 and Milner (1978)2 apply unification to calculate a “best” solution to a given constraint set.

Definition
A substitution σ is less specific (or more general) than a substitution σ ′, written σ v σ ′, if σ ′ = γ ◦ σ for some γ.

A principal unifier (or sometimes most general unifier) for a constraint set C is a substitutionσ that unifies C and
such that σ v σ ′ for every substitution σ ′ unifying C.

Question (Exercise 22.4.3)
Write down principal unifiers (when they exist) for the following sets of constraints:

{X = Nat, Y = X → X} {Nat → Nat = X → Y} {X → Y = Y → Z,Z = U → W}

{Nat = Nat → Y} {Y = Nat → Y} {}

1 R. Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. of the American Math. Society, 146, 29–60. DOI: 10.2307/1995158.
2 R. Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci., 17, 348–375, 3. DOI: 10.1016/0022- 0000(78)90014- 4.

Design Principles of Programming Languages, Spring 2023 17

https://doi.org/10.2307/1995158
https://doi.org/10.1016/0022-0000(78)90014-4

Unification Algorithm

unify(C) = if C = ∅, then []

else let {S = T }∪ C ′ = C in
if S = T

then unify(C ′)

else if S = X and X 6∈ FV(T)

then unify([X 7→ T]C ′) ◦ [X 7→ T]

else if T = X and X 6∈ FV(S)

then unify([X 7→ S]C ′) ◦ [X 7→ S]

else if S = S1 → S2 and T = T1 → T2

then unify(C ′ ∪ {S1 = T1,S2 = T2})

else
fail

What if we omit the occur checks (i.e., X 6∈ FV(T) and X 6∈ FV(S))?
Design Principles of Programming Languages, Spring 2023 18

Correctness of Unification Algorithm

THEOREM
The algorithm unify always terminates, failing when given a non-unifiable constraint set as input and otherwise
returning a principal unifier.

Proof Sketch
• Termination: define the degree of C to be the pair (number of distinct type variables, total size of types).
• unify(C) returns a unifier: prove by induction on the number of recursive calls to unify.

• Fact: if σ unifies [X 7→ T]D, then σ ◦ [X 7→ T] unifies {X = T }∪ D.
• unify(C) returns a principal unifier: prove by induction on the number of recursive calls.

Design Principles of Programming Languages, Spring 2023 19

Principal Types
Definition
A principal solution for (Γ , t,S, C) is a solution (σ, T) such that, σ v σ ′ for any other solution (σ ′, T ′).
When (σ, T) is a principal solution, we call T a principal type of t under Γ .

THEOREM
If (Γ , t,S, C) has any solution, then it has a principal one.
The unify algorithm can be used to determine if there exists a solution and, if so, to calculate a principal one.

COROLLARY
It is decidable whether (Γ , t) has a solution.

Remark
Recall that type reconstruction for System F is undecidable.
Design Principles of Programming Languages, Spring 2023 20

Extension with Let-Polymorphism

Design Principles of Programming Languages, Spring 2023 21

Recall: Prenex Polymorphism

Prenex Polymorphism

• Type variables range only over quantifier-free types (monotypes).
• Quantified types (polytypes) are not allows to appear on the left-hand sides of arrows.

Let-Polymorphism is a Variant of Prenex Polymorphism Where …

• Quantifiers can only occur at the outermost level of types.
• Type abstractions are implicitly introduced at let-bindings.
• Type applications are implicitly introduced at variables.

Design Principles of Programming Languages, Spring 2023 22

Let-Polymorphism as a Fragment of System F
Syntax

t ::= x | λx:T . t | t t | let x = t in t | . . .
v ::= λx:T . t | . . .
T ::= X | T → T | . . .

T ::= ∀X1 . . . Xn.T
Γ ::= ∅ | Γ , x : T

Typing

Γ ` t1 : T1 {X1, . . . ,Xn} = FV(T1) \ FV(Γ) T1 = ∀X1 . . . Xn.T1 Γ , x : T1 ` t2 : T2

Γ ` let x = t1 in t2 : T2
T-LET

x : ∀X1 . . . Xn.T ∈ Γ

Γ ` x : [X1 7→ S1, . . . ,Xn 7→ Sn]T
T-VAR

Design Principles of Programming Languages, Spring 2023 23

Let-Polymorphism as a Fragment of System F

Example
let double = λ f:(X→X). λ a:X. f (f a) in (T-LET): ∀X.(X → X) → X → X

{double (λ x:Nat. succ (succ x)) 1, (T-VAR): (Nat → Nat) → Nat → Nat
double (λ x:Bool. x) false} (T-VAR): (Bool → Bool) → Bool → Bool

Observation
Let-polymorphism can be equivalently implemented in simply-typed lambda-calculus with the following rule:

Γ ` t1 : T1 Γ ` [x 7→ t1]t2 : T2

Γ ` let x = t1 in t2 : T2
T-LETPOLY

Design Principles of Programming Languages, Spring 2023 24

Constraint Typing for Let-Polymorphism

Γ ` t1 : T1 |X1
C1 {X1, . . . ,Xn} = FV(T1)∪ FV(C1) \ FV(Γ)

T1 = ∀X1 . . . Xn.C1 ⊃ T1 Γ , x : T1 ` t2 : T2 |X2
C2

Γ ` let x = t1 in t2 : T2 |X1∪X2
C1 ∪ C2

CT-LET

x : ∀X1 . . . Xn.C ⊃ T ∈ Γ Y1, . . . , Yn 6∈ X1, . . . ,Xn, T , Γ
Γ ` x : [X1 7→ Y1, . . . ,Xn 7→ Yn]T |{Y1,...,Yn} [X1 7→ Y1, . . . ,Xn 7→ Yn]C

CT-VAR

Example
let double = λ f:(X→X). λ a:X. f (f a) in

(CT-LET): ∀X,X1,X2. {X → X = X → X1,X → X = X1 → X2} ⊃ (X → X) → X → X2 | {. . .}

{double (λ x:Nat. succ (succ x)) 1,
(CT-VAR): (Y → Y) → Y → Y2 | {Y → Y = Y → Y1, Y → Y = Y1 → Y2}∪ {Y → Y = Nat → Nat}
double (λ x:Bool. x) false}

(CT-VAR): (Z → Z) → Z → Z2 | {Z → Z = Z → Z1,Z → Z = Z1 → Z2}∪ {Z → Z = Bool → Bool}

Design Principles of Programming Languages, Spring 2023 25

Interaction with Side Effects

Example
Let-polymorphism would assign ∀X.Ref(X → X) to r in the following code:

let r = ref (λ x:X. x) in
(r := (λ x:Nat. succ x);
(!r)true);

When type-checking the second line, we instantiate r to have type Ref(Nat → Nat).
When type-checking the third line, we instantiate r to have type Ref(Bool → Bool).
But this is unsound!

Value Restriction
A let-binding can be treated polymorphically—i.e., its free type variables can be generalized—only if its
right-hand side is a syntactic value.

Design Principles of Programming Languages, Spring 2023 26

Homework
Question
Consider the following lambda-abstraction:

λ x:X. x x
Construct a constraint typing derivation for it.
Is the constraint set unifiable?
What if removing the occur checks in the unify algorithm and allowing recursive types, as shown below?
What is the result of this unify algorithm?

unify(C) = . . .

else if S = X and X 6∈ FV(T)

then unify([X 7→ T]C ′) ◦ [X 7→ T]

else if S = X and X ∈ FV(T)

then unify([X 7→ µX.T]C ′) ◦ [X 7→ µX.T]
. . .

Design Principles of Programming Languages, Spring 2023 27

