wiTIE S Bt RIE
Design Principles of
Programming Languages

Haiyan Zhao, Di Wang
X, @

Peking University, Spring Term 2023

Chap22: Type Reconstruction

Formulation
Constraint-Based Typing
Unification & Principal Types

Extension with Let-Polymorphism

Recall: Erasure & Type Reconstruction

erase(x) ey
erase(Ax:Ty. 1) & \x. erase(ty)
erase(tq ty) d:efemse(ﬁ) erase(t,)
erase(AX. t;) &f erase(t,)

erase(t [T,]) & erase(t;)

Given an untyped term m, whether we can find some well-typed term t such thaterase(t) = m.

Recall: Prenex Polymorphism

Prenex Polymorphism

e Type variables range only over quantifier-free types (monotypes).

e Quantified types (polytypes) are not allows to appear on the left-hand sides of arrows.

Remark

Type reconstruction for prenex polymorphismis decidable!

In This Chapter

® We first develop a type-reconstruction algorithm for simply-typed lambda-calculus.
® We then consider a variant of prenex polymorphism named let-polymorphism.

Formulation

Simply-Typed Lambda-Calculus with Type Variables

Syntax
to=x|AxT.t|tt]...
vi=AxT.t]...
T:=X|T—>T]|...
=g |Ix:T

Typing

x:TeTl Fx:TiEt: Ty ety :Tyy — T2 'ty :Tqq
T-App

T-VAR -ABS
F'Ex:T Fr'EAxT.t2: T = T F'Etity: T2

Type Substitutions

Atype substitution is a finite mapping from type variables to types.

Example

We define o & [X — Bool, Y — U] for the substitution that maps X to Bool and Y to U.
We write dom (-) for left-hand sides of pairs in a substitution, e.g., dom (o) = {X, Y}.
We write range(-) for the right-hand sides of pairs in a substitution, e.g., range(o) = {Bool, U}.

Remark

The pairs of a substitution are applied simultaneously.
Forexample, [X — Bool, Y — X — X] maps Y to X — X, not Bool — Bool.

Type Substitutions

Application of a Substitution to Types

X) e | T ifX—=T)eo
o =
X ifXisnotinthedomainofo

o(Nat) £ Nat

o(Bool) & Bool

o(Ty = T2) ¥ o(Ty) — o(Ty)

Composition of Substitutions

def | X+ 0(T) foreach(X—T) ey

O°Y =1 X3 T foreach (X — T) € owithX & dom(y)

Type Substitutions

Application of a Substitution to Contexts

oM. t2) E axio(Ty). o(ty)

o(ts t2) € o(ty) oltz)

THEOREM (PRESERVATION OF TYPING UNDER A SUBSTITUTION)
If ois any type substitutionand '+t : T, then o(T') F o(t) : o(T).

Type Reconstruction

Let " be a context and t be a term. A solution for (T', t) is a pair (o, T) such that o(T") - o(t) : T.

Remark (Two Viewsof o(T') = o(t) : T)

® Type reconstruction: does there exist some o such that o(T") F o(t) : T forsome T?
® Another view: forevery o, dowe have o(T") - o(t) : T forsome T?
® This corresponds to parametric polymorphism,e.g., o - Af:X — X. Aa:X. f (fa): X = X) = X = X.

Example
letlm . X,a:Yandt & ¢ a. Below gives some solutions for (T, t):
o T o T
X — Y — Nat] Nat X—=Y—Z] Z
X +—Y —= Nat — Nat] Nat — Nat

x—Y — Z, Z+— Nat] Z
[X — Nat — Nat, Y — Nat] Nat

Erasure (revisited)

def
erase(x) = x
erase(Ax:T1.t2) L. erase(ty)

erase(tq ta) def erase(ty) erase(ty)

Let T be a context and m be an untyped term. A solution for (T, m) is a substitution (o, T) such that o(T) F m : T.

x:TeTl Fx:TikFt: T, ety Ty = Th2 'ty :Tqq
— T-VAR T-ABs T-App
Nex:T F'EAx.ty: T =T NEtity:Tho

Given the derivation, it is trivial to construct a well-typed term t such that erase(t) = m.

Constraint-Based Typing

Constraint Typing

A constraint set C is a set of equations {S; = T; '™} where Si’s and T;’s are types.

I'=1t:Tly C:“termthas type T under context I' whenever constraints C are satisfied”

x:TeTl Fx:TiEt:Th|x C
—— CT-VAR CT-ABs
F'ex:Tlg{} ATy t: T = To | C

N=t: T |x1 C N-=t,:T, |x2 Cy X1NX =X1NFV(T)) =X NFV(T) =92
X&€Xq1,X2,T1,T5,C1,Co, T, t1, t2 C/=C1 UCU{Ty =T, — X}

F'Etity: X |3C1U3C2U{X} C’

CT-App

The set X is used to track new type variables introduced in each subderivation.

Construct a constraint typing derivation for Ax:X. Ay:Y. Az:Z. (x z) (y z).

Solutions for Constraint Typing

A substitution o is said to unify an equation S = T if o(S) = o(T).
We say that o unifies a constraint set C if it unifies every equation in C.

SupposethatT" -t :S | C. Asolutionfor (T, t, S, C) is a pair (o, T) such that o unified Cand o(S) = T.

Remark

Recall that a solution for (T, t) is a pair (o, T) such that o(T") - o(t) : T.
What are the relation between the two definitions of solutions for type reconstruction?

Properties of Constraint Typing

THEOREM (SOUNDNESS)

SupposethatT = t:S | C. If (o, T)isasolution for (T, t, S, C), thenitis also a solution for (T, t).

Proof Sketch

By induction on the derivation of constraint typing.

THEOREM (COMPLETENESS)

SupposeT -1t :S |y C.If (o, T)isasolution for (T', t) and dom (o) N X = @, then there is some solution (¢’, T)
for(T',t, S, C)suchthat o’ \ X = o.

Proof Sketch

By induction on the derivation of constraint typing.

Unification & Principal Types

Find a Most General Substitution o that Unifies a Constraint Set C

Unification

Remark

Hindley (1969)" and Milner (1978)% apply unification to calculate a “best” solution to a given constraint set.

A substitution o is less specific (or more general) than a substitution o/, written o C o', if o/ =y o o forsomey.

A principal unifier (or sometimes most general unifier) for a constraint set C is a substitution o that unifies C and
such that o C o’ for every substitution o’ unifying C.

Write down principal unifiers (when they exist) for the following sets of constraints:
{X=Nat,Y=X—=X} {Nat—=Nat=X—=Y} X=Y=Y—-ZZ=U—-W}
{Nat =Nat — Y} {Y=Nat = Y} {}

TR. Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Tran:

2R. Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci

https://doi.org/10.2307/1995158
https://doi.org/10.1016/0022-0000(78)90014-4

Unification Algorithm

unify(C) = ifC=go,then|]
elselet{S=T}UC’ =Cin
ifS=T
then unify(C
elseif S = XandX ¢ FV(T)
then unify(X — TIC') o [X > T]
elseif T =Xand X ¢ FV(S)
then unify([X — SIC’) o [X — S]
elseifS=S7 - S,andT=T7; - T»
then unify(C’ U{S1 =T1,S, =T}
else
fail
What if we omit the occur checks (i.e., X ¢ FV(T)and X € FV(S))?

Correctness of Unification Algorithm

THEOREM

The algorithm unify always terminates, failing when given a non-unifiable constraint set as input and otherwise
returning a principal unifier.

Proof Sketch

® Termination: define the degree of C to be the pair (number of distinct type variables, total size of types).
® unify(C) returns a unifier: prove by induction on the number of recursive calls to unify.
® Fact: if o unifies [X — T]D, then oo [X — T]unifies{X =T}UD.

e unify(C) returns a principal unifier: prove by induction on the number of recursive calls.

Principal Types

A principal solution for (T', t, S, C) is a solution (o, T) such that, 0 C o’ for any other solution (o’, T').
When (o, T) is a principal solution, we call T a principal type of t underT.

THEOREM

If (T', t, S, C) has any solution, then it has a principal one.
The unify algorithm can be used to determine if there exists a solution and, if so, to calculate a principal one.

COROLLARY
Itis decidable whether (T, t) has a solution.

Remark

Recall that type reconstruction for System Fis undecidable.

Extension with Let-Polymorphism

Recall: Prenex Polymorphism

Prenex Polymorphism

® Typevariables range only over quantifier-free types (monotypes).
e Quantified types (polytypes) are not allows to appear on the left-hand sides of arrows.

Let-Polymorphism is a Variant of Prenex Polymorphism Where ...

e Quantifiers can only occur at the outermost level of types.
® Type abstractions are implicitly introduced at let-bindings.

e Type applications are implicitly introduced at variables.

Let-Polymorphism as a Fragment of System F

Syntax
ti=x|AxT.t|tt]|letx=tint]...
vi=AxT.t]...

T=X|T—=T]|...
T:=VXy...Xn.T
=@ |lx:T

Typing

NEt;:Tq Xi,..., Xn}t=FV(T;)\FV(I") T =VX;...Xn.Tq I''x:T1Ft: T, o
-LET

NEletx=t;inty: Ty

x:VX7...Xp. TET
FFX:[X]HS1 XnHSn]T

Let-Polymorphism as a Fragment of System F

Example
let double = Af:(X—X). Aa:X. £ (f a) in (T-LET): ¥X.(X = X) = X = X
{double (Ax:Nat. succ (succ x)) 1, (TVAR): (Nat — Nat) — Nat — Nat
double (Ax:Bool. x) false} (T\VAR): (Bool — Bool) — Bool — Bool

Let-polymorphism can be equivalently implemented in simply-typed lambda-calculus with the following rule:
et : Ty FeExe—=tlta:To
'Eletx=t;inty: T

T-LETPOLY

Constraint Typing for Let-Polymorphism

FEt:Tylx, G {X1,..., X0} =FV(T;)UFV(Cy)\ FV(T")
T =vX;...Xn.C; DT r,X:T]Ft2:T2|x2C2
NEletx=t;inty: T |DC1UDCZ CiuCy

CT-LET

X VX7 XnCOTET Y1, Yn €Xq10eee, Xn, T, T
TEx: X1 = Y1, ee, Xn o YalT by, vy X1 = Y1,ee, X = YnlC

CT-VAR

.....

Example

let double = Af:(X—X). Aa:X. £ (f a) in
(CT-LET): VX, X7, X0 . X =2 X=X =2 X1, X=> X=X =2 X2} D (X=X) = X = X5 |{...}
{double (Ax:Nat. succ (succ x)) 1,
CTVAR: (Y =Y) =Y =Y [{Y=2Y=Y=Y,Y=>Y=Y] = Y JU{Y = Y =Nat — Nat}
double (Ax:Bool. x) false}
CTVAR): (Z - Z) - Z — Z)|{ZL—-Z=2Z— 7Z1,Z—Z=1727 — Z}U{Z — Z =Bool — Bool}

Interaction with Side Effects

Example

Let-polymorphism would assign VX.Ref (X — X) to r in the following code:

let r = ref (Ax:X. x) in
(r:=(Ax:Nat. succ x);
(It)true);
When type-checking the second line, we instantiate 1 to have type Ref(Nat — Nat).
When type-checking the third line, we instantiate 1 to have type Ref(Bool — Bool).
But this is unsound!

Value Restriction

A let-binding can be treated polymorphically—i.e., its free type variables can be generalized—only if its
right-hand side is a syntacticvalue.

Homework

Consider the following lambda-abstraction:

Ax:X. X X
Construct a constraint typing derivation for it.
Is the constraint set unifiable?
What if removing the occur checks in the unify algorithm and allowing recursive types, as shown below?
Whatiis the result of this unify algorithm?

unify(C) = ...
elseif S = Xand X ¢ FV(T)

then unify([X — TIC") o [X > T]
elseif S = Xand X € FV(T)

then unify(X — uX.TIC') o [X — pX.T]

