编程语言的设计原理
 Design Principles of
 Programming Languages

Haiyan Zhao，Di Wang
赵海燕，王迪
Peking University，Spring Term 2023

Chap 22: Type Reconstruction

Formulation
Constraint-Based Typing
Unification \& Principal Types
Extension with Let-Polymorphism

Recall: Erasure \& Type Reconstruction

$$
\begin{aligned}
\operatorname{erase}(x) & \stackrel{\text { def }}{=} x \\
\operatorname{erase}\left(\lambda x: T_{1} \cdot t_{2}\right) & \stackrel{\text { def }}{=} \lambda x \cdot \operatorname{erase}\left(t_{2}\right) \\
\operatorname{erase}\left(t_{1} t_{2}\right) & \stackrel{\text { def }}{=} \operatorname{erase}\left(t_{1}\right) \operatorname{erase}\left(t_{2}\right) \\
\operatorname{erase}\left(\lambda x \cdot t_{2}\right) & \stackrel{\text { def }}{=} \operatorname{erase}\left(t_{2}\right) \\
\operatorname{erase}\left(t_{1}\left[T_{2}\right]\right) & \stackrel{\text { def }}{=} \operatorname{erase}\left(t_{1}\right)
\end{aligned}
$$

Definition (Type Reconstruction)

Given an untyped term m, whether we can find some well-typed term $t \operatorname{such}$ that $\operatorname{erase}(t)=m$.

Recall: Prenex Polymorphism

Prenex Polymorphism

- Type variables range only over quantifier-free types (monotypes).
- Quantified types (polytypes) are not allows to appear on the left-hand sides of arrows.

Remark

Type reconstruction for prenex polymorphism is decidable!

In This Chapter

- We first develop a type-reconstruction algorithm for simply-typed lambda-calculus.
- We then consider a variant of prenex polymorphism named let-polymorphism.

Formulation

Simply-Typed Lambda-Calculus with Type Variables

Syntax

$$
\begin{aligned}
\mathrm{t}: & =x|\lambda x: \mathrm{T}, \mathrm{t}| \mathrm{tt} \mid \ldots \\
v: & =\lambda x: \mathrm{T} \cdot \mathrm{t} \mid \ldots \\
\mathrm{T}: & =\mathrm{X}|\mathrm{~T} \rightarrow \mathrm{~T}| \ldots \\
\Gamma: & =\varnothing \mid \Gamma, x: \mathrm{T}
\end{aligned}
$$

Typing

$$
\frac{x: T \in \Gamma}{\Gamma \vdash x: T} T \text { TVAR } \quad \frac{\Gamma, x: T_{1} \vdash t_{2}: T_{2}}{\Gamma \vdash \lambda x: T_{1} \cdot t_{2}: T_{1} \rightarrow T_{2}} T \text {-ABS } \quad \frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}} \text { T-APP }
$$

Type Substitutions

Definition

A type substitution is a finite mapping from type variables to types.

Example

We define $\sigma \stackrel{\text { def }}{=}[\mathrm{X} \mapsto$ Bool, $Y \mapsto \mathrm{U}]$ for the substitution that maps X to Bool and Y to U.
We write $\operatorname{dom}(\cdot)$ for left-hand sides of pairs in a substitution, e.g., $\operatorname{dom}(\sigma)=\{\mathrm{X}, \mathrm{Y}\}$.
We write range (•) for the right-hand sides of pairs in a substitution, e.g., $\operatorname{range}(\sigma)=\{B o o l, \mathrm{U}\}$.

Remark

The pairs of a substitution are applied simultaneously.
For example, $[\mathrm{X} \mapsto \mathrm{Bool}, \mathrm{Y} \mapsto \mathrm{X} \rightarrow \mathrm{X}]$ maps Y to $\mathrm{X} \rightarrow \mathrm{X}$, not Bool \rightarrow Bool.

Type Substitutions

Application of a Substitution to Types

$$
\begin{aligned}
& \sigma(X) \stackrel{\text { def }}{=} \begin{cases}T & \text { if }(X \mapsto T) \in \sigma \\
X & \text { if } X \text { is not in the domain of } \sigma\end{cases} \\
& \sigma(\text { Nat }) \stackrel{\text { def }}{=} \text { Nat } \\
& \sigma(\text { Bool }) \stackrel{\text { def }}{=} \text { Bool } \\
& \sigma\left(T_{1} \rightarrow T_{2}\right) \stackrel{\text { def }}{=} \sigma\left(T_{1}\right) \rightarrow \sigma\left(T_{2}\right)
\end{aligned}
$$

Composition of Substitutions

$$
\sigma \circ \gamma \stackrel{\text { def }}{=}\left[\begin{array}{ll}
\mathrm{X} \mapsto \sigma(\mathrm{~T}) & \text { for each }(\mathrm{X} \mapsto \mathrm{~T}) \in \gamma \\
\mathrm{X} \mapsto \mathrm{~T} & \text { for each }(\mathrm{X} \mapsto \mathrm{~T}) \in \sigma \text { with } \mathrm{X} \notin \operatorname{dom}(\gamma)
\end{array}\right]
$$

Type Substitutions

Application of a Substitution to Contexts

$$
\sigma\left(x_{1}: T_{1}, \ldots, x_{n}: T_{n}\right) \stackrel{\text { def }}{=}\left(x_{1}: \sigma\left(T_{1}\right), \ldots, x_{n}: \sigma\left(T_{n}\right)\right)
$$

Application of a Substitution to Terms

$$
\begin{aligned}
& \sigma(x) \stackrel{\text { def }}{=} x \\
& \sigma\left(\lambda x: T_{1} \cdot t_{2}\right) \stackrel{\text { def }}{=} \lambda x: \sigma\left(T_{1}\right) \cdot \sigma\left(t_{2}\right) \\
& \sigma\left(t_{1} t_{2}\right) \stackrel{\text { def }}{=} \sigma\left(t_{1}\right) \sigma\left(t_{2}\right)
\end{aligned}
$$

Theorem (Preservation of Typing under a Substitution)

If σ is any type substitution and $\Gamma \vdash \mathrm{t}: \mathrm{T}$, then $\sigma(\Gamma) \vdash \sigma(\mathrm{t}): \sigma(\mathrm{T})$.

Type Reconstruction

Definition (Type Reconstruction in terms of Substitutions)

Let Γ be a context and t be a term. A solution for (Γ, t) is a pair (σ, T) such that $\sigma(\Gamma) \vdash \sigma(t): T$.

Remark (Two Views of $\sigma(\Gamma) \vdash \sigma(\mathrm{t}): \mathrm{T}$)

- Type reconstruction: does there exist some σ such that $\sigma(\Gamma) \vdash \sigma(\mathrm{t}): \mathrm{T}$ for some T ?
- Another view: for every σ, do we have $\sigma(\Gamma) \vdash \sigma(\mathrm{t}): \mathrm{T}$ for some T ?
- This corresponds to parametric polymorphism, e.g., $\varnothing \vdash \lambda f: X \rightarrow X . \lambda a: X . f(f a):(X \rightarrow X) \rightarrow X \rightarrow X$.

Example

Let $\Gamma \stackrel{\text { def }}{=} f: X, a: Y$ and $t \stackrel{\text { def }}{=} f a$. Below gives some solutions for (Γ, t) :

σ	T	σ	T
$[X \mapsto Y \rightarrow$ Nat $]$	Nat	$[X \mapsto Y \rightarrow Z]$	Z
$[X \mapsto Y \rightarrow Z, Z \mapsto N a t]$	Z	$[X \mapsto Y \rightarrow$ Nat \rightarrow Nat $]$	Nat \rightarrow Nat
$[X \mapsto$ Nat \rightarrow Nat, $Y \mapsto$ Nat $]$	Nat		

Erasure (revisited)

$$
\begin{aligned}
\operatorname{erase}(x) & \stackrel{\text { def }}{=} x \\
\operatorname{erase}\left(\lambda x: T_{1} \cdot t_{2}\right) & \stackrel{\text { def }}{=} \lambda x . \operatorname{erase}\left(t_{2}\right) \\
\operatorname{erase}\left(t_{1} t_{2}\right) & \stackrel{\text { def }}{=} \operatorname{erase}\left(t_{1}\right) \operatorname{erase}\left(t_{2}\right)
\end{aligned}
$$

Definition (Type Reconstruction)

Let Γ be a context and m be an untyped term. A solution for (Γ, m) is a substitution (σ, T) such that $\sigma(\Gamma) \vdash m: T$.

$$
\frac{x: T \in \Gamma}{\Gamma \vdash x: T} T-V A R \quad \frac{\Gamma, x: T_{1} \vdash t_{2}: T_{2}}{\Gamma \vdash \lambda x . t_{2}: T_{1} \rightarrow \mathrm{~T}_{2}} \text { T-ABS } \quad \frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{11} \rightarrow \mathrm{~T}_{12} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{11}}{\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: \mathrm{T}_{12}} \text { T-APP }
$$

Given the derivation, it is trivial to construct a well-typed term t such that $\operatorname{erase}(\mathrm{t})=\mathrm{m}$.

Constraint-Based Typing

Constraint Typing

Definition

A constraint set C is a set of equations $\left\{S_{i}=T_{i}{ }^{1 \ldots n}\right\}$ where S_{i} 's and T_{i} 's are types.
$\Gamma \vdash t: T \mid x C$: "term t has type T under context Γ whenever constraints C are satisfied"

$$
\begin{array}{cc}
\frac{\mathrm{x}: \mathrm{T} \in \Gamma}{\Gamma \vdash \mathrm{x}: \mathrm{T} \mid \varnothing\{ \}} \mathrm{CT}-\mathrm{VAR} & \frac{\Gamma, \mathrm{x}: \mathrm{T}_{1} \vdash \mathrm{t}_{2}: \mathrm{T}_{2} \mid x \mathrm{C}}{\Gamma \vdash \lambda x: \mathrm{T}_{1}, \mathrm{t}_{2}: \mathrm{T}_{1} \rightarrow \mathrm{~T}_{2} \mid x \mathrm{C}} \mathrm{CT}-\mathrm{ABS} \\
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1} \mid x_{1} \mathrm{C}_{1}}{} \quad \Gamma \vdash \mathrm{t}_{2}: \mathrm{T}_{2} \mid x_{2} C_{2} & x_{1} \cap x_{2}=x_{1} \cap F V\left(\mathrm{~T}_{2}\right)=x_{2} \cap F V\left(\mathrm{~T}_{1}\right)=\varnothing \\
\mathrm{X} \notin x_{1}, x_{2}, \mathrm{~T}_{1}, \mathrm{~T}_{2}, C_{1}, C_{2}, \Gamma, \mathrm{t}_{1}, \mathrm{t}_{2} & \mathrm{C}^{\prime}=C_{1} \cup \mathrm{C}_{2} \cup\left\{\mathrm{~T}_{1}=\mathrm{T}_{2} \rightarrow X\right\} \\
\Gamma \vdash \mathrm{t}_{1} \mathrm{t}_{2}: X \mid x_{1} \cup x_{2} \cup\{\mathrm{X}\} & \mathrm{C}^{\prime}
\end{array} \mathrm{CT} \text { CTAPP }
$$

The set X is used to track new type variables introduced in each subderivation.

Question (Exercise 22.3.3)

Construct a constraint typing derivation for $\lambda x: X . \lambda y: Y . \lambda z: Z .(x z)(y z)$.

Solutions for Constraint Typing

Definition

A substitution σ is said to unify an equation $S=T$ if $\sigma(S)=\sigma(T)$.
We say that σ unifies a constraint set C if it unifies every equation in C.

Definition

Suppose that $\Gamma \vdash t: S \mid C$. A solution for (Γ, t, S, C) is a pair (σ, T) such that σ unified C and $\sigma(S)=T$.

Remark

Recall that a solution for (Γ, t) is a pair (σ, T) such that $\sigma(\Gamma) \vdash \sigma(t): T$. What are the relation between the two definitions of solutions for type reconstruction?

Properties of Constraint Typing

Theorem (Soundness)

Suppose that $\Gamma \vdash \mathrm{t}: \mathrm{S} \mid \mathrm{C}$. If (σ, T) is a solution for $(\Gamma, \mathrm{t}, \mathrm{S}, \mathrm{C})$, then it is also a solution for (Γ, t).

Proof Sketch

By induction on the derivation of constraint typing.

Theorem (Completeness)

Suppose $\Gamma \vdash \mathrm{t}: \mathrm{S} \mid x \mathrm{C}$. If (σ, T) is a solution for (Γ, t) and $\operatorname{dom}(\sigma) \cap \mathcal{X}=\varnothing$, then there is some solution $\left(\sigma^{\prime}, \mathrm{T}\right)$ for $(\Gamma, \mathrm{t}, \mathrm{S}, \mathrm{C})$ such that $\sigma^{\prime} \backslash X=\sigma$.

Proof Sketch

By induction on the derivation of constraint typing.

Unification \& Principal Types

Find a Most General Substitution σ that Unifies a Constraint Set C

Unification

Remark

Hindley (1969) ${ }^{1}$ and Milner $(1978)^{2}$ apply unification to calculate a "best" solution to a given constraint set.

Definition

A substitution σ is less specific (or more general) than a substitution σ^{\prime}, written $\sigma \sqsubseteq \sigma^{\prime}$, if $\sigma^{\prime}=\gamma \circ \sigma$ for some γ.
A principal unifier (or sometimes most general unifier) for a constraint set C is a substitution σ that unifies C and such that $\sigma \sqsubseteq \sigma^{\prime}$ for every substitution σ^{\prime} unifying C.

Question (Exercise 22.4.3)

Write down principal unifiers (when they exist) for the following sets of constraints:

$$
\begin{array}{lll}
\{\mathrm{X}=\text { Nat, } \mathrm{Y}=\mathrm{X} \rightarrow \mathrm{X}\} & \{\text { Nat } \rightarrow \text { Nat }=\mathrm{X} \rightarrow \mathrm{Y}\} & \{\mathrm{X} \rightarrow \mathrm{Y}=\mathrm{Y} \rightarrow \mathrm{Z}, \mathrm{Z}=\mathrm{U} \rightarrow \mathrm{~W}\} \\
\{\text { Nat }=\text { Nat } \rightarrow \mathrm{Y}\} & \{\mathrm{Y}=\text { Nat } \rightarrow \mathrm{Y}\} & \}
\end{array}
$$

[^0]
Unification Algorithm

$$
\begin{aligned}
& \text { unify }(C)=\text { if } C=\varnothing \text {, then [] } \\
& \text { else let }\{S=T\} \cup C^{\prime}=C \text { in } \\
& \text { if } S=T \\
& \text { then unify (} C^{\prime} \text {) } \\
& \text { else if } S=X \text { and } X \notin F V(T) \\
& \text { then unify }\left([\mathrm{X} \mapsto \mathrm{~T}] \mathrm{C}^{\prime}\right) \circ[\mathrm{X} \mapsto \mathrm{~T}] \\
& \text { else if } \mathrm{T}=\mathrm{X} \text { and } \mathrm{X} \notin F V(\mathrm{~S}) \\
& \text { then unify }\left([\mathrm{X} \mapsto \mathrm{~S}] \mathrm{C}^{\prime}\right) \circ[\mathrm{X} \mapsto \mathrm{~S}] \\
& \text { else if } S=S_{1} \rightarrow S_{2} \text { and } T=T_{1} \rightarrow T_{2} \\
& \text { then unify }\left(\mathrm{C}^{\prime} \cup\left\{\mathrm{S}_{1}=\mathrm{T}_{1}, \mathrm{~S}_{2}=\mathrm{T}_{2}\right\}\right. \text {) } \\
& \text { else } \\
& \text { fail }
\end{aligned}
$$

Correctness of Unification Algorithm

Theorem

The algorithm unify always terminates, failing when given a non-unifiable constraint set as input and otherwise returning a principal unifier.

Proof Sketch

- Termination: define the degree of C to be the pair (number of distinct type variables, total size of types).
- unify (C) returns a unifier: prove by induction on the number of recursive calls to unify.
- Fact: if σ unifies $[\mathrm{X} \mapsto \mathrm{T}] D$, then $\sigma \circ[\mathrm{X} \mapsto \mathrm{T}]$ unifies $\{\mathrm{X}=\mathrm{T}\} \cup D$.
- unify (C) returns a principal unifier: prove by induction on the number of recursive calls.

Principal Types

Definition

A principal solution for $(\Gamma, \mathrm{t}, \mathrm{S}, \mathrm{C})$ is a solution (σ, T) such that, $\sigma \sqsubseteq \sigma^{\prime}$ for any other solution $\left(\sigma^{\prime}, \mathrm{T}^{\prime}\right)$. When (σ, T) is a principal solution, we call T a principal type of t under Γ.

Theorem

If ($\Gamma, \mathrm{t}, \mathrm{S}, \mathrm{C})$ has any solution, then it has a principal one.
The unify algorithm can be used to determine if there exists a solution and, if so, to calculate a principal one.

Corollary

It is decidable whether (Γ, t) has a solution.

Remark

Recall that type reconstruction for System F is undecidable.

Extension with Let-Polymorphism

Recall: Prenex Polymorphism

Prenex Polymorphism

- Type variables range only over quantifier-free types (monotypes).
- Quantified types (polytypes) are not allows to appear on the left-hand sides of arrows.

Let-Polymorphism is a Variant of Prenex Polymorphism Where

- Quantifiers can only occur at the outermost level of types.
- Type abstractions are implicitly introduced at let-bindings.
- Type applications are implicitly introduced at variables.

Let-Polymorphism as a Fragment of System F

Syntax

$$
\begin{aligned}
& \mathrm{t}: \\
& v:=x|\lambda x: \mathrm{T} . \mathrm{t}| \mathrm{tt} \mid \text { let } x=\mathrm{t} \text { in } \mathrm{t} \mid \ldots \\
& \mathrm{T}:=\mathrm{X}: \mathrm{T} \cdot \mathrm{~T} \mid \ldots \\
& \mathbb{T}::=\forall \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{n}} \cdot \mathrm{~T} \\
& \Gamma::=\varnothing \mid \Gamma, \chi: \mathbb{T}
\end{aligned}
$$

Typing

$$
\begin{aligned}
& \frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1} \quad\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}=F V\left(\mathrm{~T}_{1}\right) \backslash F V(\Gamma) \quad \mathbb{T}_{1}=\forall \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{n}} \cdot \mathrm{~T}_{1} \quad \Gamma, \mathrm{x}: \mathbb{T}_{1} \vdash \mathrm{t}_{2}: \mathrm{T}_{2}}{\Gamma \vdash \text { let } \mathrm{x}=\mathrm{t}_{1} \text { in }_{2}: \mathrm{T}_{2}} \text { T-LET } \\
& \frac{x: \forall X_{1} \ldots X_{n} \cdot T \in \Gamma}{\Gamma \vdash x:\left[X_{1} \mapsto S_{1}, \ldots, X_{n} \mapsto S_{n}\right] T}{ }^{T-V A R}
\end{aligned}
$$

Let-Polymorphism as a Fragment of System F

```
Example
    let double = \lambdaf:(X->X). \lambdaa:X. f (f a) in (T-Let): \forallX.(X }->\textrm{X})->\textrm{X}->\textrm{X
        {double (\lambdax:Nat. succ (succ x)) 1, (T-VAR): (Nat }->\mathrm{ Nat) }->\mathrm{ Nat }->\mathrm{ Nat
        double ( }\boldsymbol{\lambda}\times\mathrm{ :Bool. x) false} (T-VAR): (Bool }->\mathrm{ Bool) }->\mathrm{ Bool }->\mathrm{ Bool
```


Observation

Let-polymorphism can be equivalently implemented in simply-typed lambda-calculus with the following rule:

$$
\frac{\Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1} \quad \Gamma \vdash\left[\mathrm{x} \mapsto \mathrm{t}_{1}\right] \mathrm{t}_{2}: \mathrm{T}_{2}}{\Gamma \vdash \text { let } x=\mathrm{t}_{1} \mathrm{int}_{2}: \mathrm{T}_{2}} \text { T-LETPoLY }
$$

Constraint Typing for Let-Polymorphism

$$
\begin{aligned}
& \Gamma \vdash \mathrm{t}_{1}: \mathrm{T}_{1} \mid x_{1} C_{1} \quad\left\{\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right\}=F V\left(\mathrm{~T}_{1}\right) \cup F V\left(\mathrm{C}_{1}\right) \backslash F V(\Gamma) \\
& \mathbb{T}_{1}=\forall \mathrm{X}_{1} \ldots \mathrm{X}_{\mathrm{n}} . C_{1} \supset \mathrm{~T}_{1} \quad \Gamma, \mathrm{x}: \mathbb{T}_{1} \vdash \mathrm{t}_{2}: \mathrm{T}_{2} \mid x_{2} C_{2} \\
& \Gamma \vdash \text { let } x=t_{1} \text { in } t_{2}: T_{2} \mid x_{1} \cup x_{2} C_{1} \cup C_{2} \\
& \frac{x: \forall X_{1} \ldots X_{n} . C \supset T \in \Gamma \quad Y_{1}, \ldots, Y_{n} \notin X_{1}, \ldots, X_{n}, T, \Gamma}{\Gamma \vdash x:\left.\left[X_{1} \mapsto Y_{1}, \ldots, X_{n} \mapsto Y_{n}\right] T\right|_{\left\{Y_{1}, \ldots, Y_{n}\right\}}\left[X_{1} \mapsto Y_{1}, \ldots, X_{n} \mapsto Y_{n}\right] C} \text { CT-VAR }
\end{aligned}
$$

Example

let double $=\lambda \mathrm{f}:(\mathrm{X} \rightarrow \mathrm{X}) . \lambda a: X . \mathrm{f}(\mathrm{f}$ a) in (CT-LET): $\forall X, X_{1}, X_{2} .\left\{X \rightarrow X=X \rightarrow X_{1}, X \rightarrow X=X_{1} \rightarrow X_{2}\right\} \supset(X \rightarrow X) \rightarrow X \rightarrow X_{2} \mid\{\ldots\}$
\{double ($\boldsymbol{\lambda} x$:Nat. succ (succ x$)$) 1,
(CT-VAR): $(Y \rightarrow Y) \rightarrow Y \rightarrow Y_{2} \mid\left\{Y \rightarrow Y=Y \rightarrow Y_{1}, Y \rightarrow Y=Y_{1} \rightarrow Y_{2}\right\} \cup\{Y \rightarrow Y=$ Nat \rightarrow Nat $\}$ double (λx :Bool. x) false $\}$

$$
\left(\text { CT-VAR): }(Z \rightarrow Z) \rightarrow Z \rightarrow Z_{2} \mid\left\{Z \rightarrow Z=Z \rightarrow Z_{1}, Z \rightarrow Z=Z_{1} \rightarrow Z_{2}\right\} \cup\{Z \rightarrow Z=\text { Bool } \rightarrow \text { Bool }\}\right.
$$

Interaction with Side Effects

Example

Let-polymorphism would assign $\forall X . \operatorname{Ref}(X \rightarrow X)$ to r in the following code:

$$
\begin{aligned}
& \text { let } r=\text { ref }(\lambda x: X . x) \text { in } \\
& (r:=(\lambda x: \text { Nat. succ } x) ; \\
& (!\text { r) true }) ;
\end{aligned}
$$

When type-checking the second line, we instantiate r to have type $\operatorname{Ref}(\mathrm{Nat} \rightarrow \mathrm{Nat})$. When type-checking the third line, we instantiate r to have type Ref (Bool \rightarrow Bool). But this is unsound!

Value Restriction

A let-binding can be treated polymorphically-i.e., its free type variables can be generalized-only if its right-hand side is a syntactic value.

Homework

Question

Consider the following lambda-abstraction:

$$
\lambda x: \mathrm{X} . \mathrm{x} x
$$

Construct a constraint typing derivation for it.
Is the constraint set unifiable?
What if removing the occur checks in the unify algorithm and allowing recursive types, as shown below? What is the result of this unify algorithm?

$$
\begin{aligned}
& \text { unify }(C)=\ldots \\
& \text { else if } S=X \text { and } X \notin F V(\mathrm{~T}) \\
& \quad \text { then } \text { unify }\left([\mathrm{X} \mapsto \mathrm{~T}] C^{\prime}\right) \circ[\mathrm{X} \mapsto \mathrm{~T}] \\
& \text { else if } S=X \text { and } X \in F V(\mathrm{~T}) \\
& \quad \text { then } \text { unify }\left([\mathrm{X} \mapsto \mu \mathrm{X} . \mathrm{T}] C^{\prime}\right) \circ[\mathrm{X} \mapsto \mu \mathrm{X} . \mathrm{T}]
\end{aligned}
$$

[^0]: ${ }^{1}$ R. Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. of the American Math. Society, 146, 29-60. Dol: 10.2307/1995158.
 ${ }^{2}$ R. Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci., 17, 348-375, 3. DOI: 10.1016/0022-0000(78)90014-4.

