
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang
赵海燕，王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 2023 1

Chap 23: Universal Types

Polymorphism
System F

Examples
Properties

Type Reconstruction

Design Principles of Programming Languages, Spring 2023 2

Abstraction Principle

Example
Suppose we want to define a function double that applies its 1st argument twice to its 2nd:

doubleNat = λ f:Nat→Nat. λ a:Nat. f (f a);
doubleRcd = λ f:{l:Bool}→{l:Bool}. λ a:{l:Bool}. f (f a);
doubleFun = λ f:(Nat→Nat)→(Nat→Nat). λ a:Nat→Nat. f (f a);
They share the same behavior and the same body term.

PRINCIPLE (ABSTRACTION)
Each significant piece of functionality in a program should be implemented in just one place in the source code.

double = λ X. λ f:X→X. λ a:X. f (f a);

Design Principles of Programming Languages, Spring 2023 3

Polymorphism
Parametric Polymorphism
Allow a single piece of code to be typed “generically” using type variables.
id = λ X. λ x:X. x;
▶ id : ∀ X. X → X

Ad-hoc Polymorphism
Allow a polymorphic value to exhibit different behaviors when “viewed” at different types.

• Overloading: 1+2 1.0+2.0 "we"+"you"
• Typeclasses: (+) :: Num a => a -> a -> a

Subtype Polymorphism

Allow a single term to have many types using the rule of subsumption:
Γ ` t : S S <: T

Γ ` t : T
.

Design Principles of Programming Languages, Spring 2023 4

System F
The Most Powerful Form of Parametric Polymorphism

Design Principles of Programming Languages, Spring 2023 5

System F

Some Historical Accounts
• System F was introduced by Girard (1972) in the context of proof theory.1

• System F was independently developed by Reynolds (1974) in the context of programming languages.2

• Reynolds called System F the polymorphic lambda-calculus.

PRINCIPLE
System F is a straightforward extension of λ→.

• In λ→, we use λx:T . t to abstract terms out of terms.
• In System F, we introduce λX. t to abstract types out of terms.

1 J.-Y. Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. PhD thesis. Université Paris 7.
2 J. C. Reynolds. 1974. Towards a Theory of Type Structure. In Programming Symposium, Proceedings Colloque sur la Programmation, 408–423. DOI: 10.1007/3- 540- 06859- 7_148.

Design Principles of Programming Languages, Spring 2023 6

https://doi.org/10.1007/3-540-06859-7_148

Syntax and Evaluation
Syntax

t ::= . . . | λX. t | t [T]
v ::= . . . | λX. t

Evaluation

t1 −→ t ′1
t1 [T2] −→ t ′1 [T2]

E-TAPP
(λX. t12) [T2] −→ [X 7→ T2]t12

E-TAPPTABS

Example
Recall that we define id def

= λX. λx:X. x. Thus

id [Nat] −→ [X 7→ Nat](λx:X. x) = λx:Nat. x

Design Principles of Programming Languages, Spring 2023 7

Types, Type Contexts, and Typing
Types and Type Contexts

T ::= X | T → T | ∀X.T
Γ ::= ∅ | Γ , x : T | Γ ,X

Typing
Γ ,X ` t2 : T2

Γ ` λX. t2 : ∀X.T2
T-TABS

Γ ` t1 : ∀X.T12
Γ ` t1 [T2] : [X 7→ T2]T12

T-TAPP

Example
T-VAR

X, x : X ` x : X
T-ABS

X ` λx:X. x : X → X T-TABS∅ ` λX. λx:X. x : ∀X.X → X

Design Principles of Programming Languages, Spring 2023 8

Examples
Polymorphic Functions

Polymorphic Lists
Church Encodings

Design Principles of Programming Languages, Spring 2023 9

Polymorphic Functions

id = λ X. λ x:X. x;
▶ id : ∀ X. X → X
id [Nat] 0;
▶ 0 : Nat

double = λ X. λ f:X→X. λ a:X. f (f a);
▶ double : ∀ X. (X→X) → X → X
double [Nat] (λ x:Nat. succ(succ(x))) 3;
▶ 7 : Nat

selfApp = λ x:∀ X.X→X. x [∀ X.X→X] x;
▶ selfApp : (∀ X. X→X) → (∀ X. X→X)

quadruple = λ X. double [X→X] (double [X]);
▶ quadruple : ∀ X. (X→X) → X → X

Design Principles of Programming Languages, Spring 2023 10

Polymorphic Lists
List as a Type Constructor
We assume the language has the following primitives:

nil : ∀ X. List X isnil : ∀ X. List X → Bool
cons : ∀ X. X → List X → List X head : ∀ X. List X → X

tail : ∀ X. List X → List X

Example

map = λ X. λ Y. λ f: X→Y.
(fix (λ m: (List X) → (List Y).

λ l: List X.
if isnil [X] l then nil [Y]

else cons [Y] (f (head [X] l)) (m (tail [X] l))));
▶ map : ∀ X. ∀ Y. (X→Y) → List X → List Y

Design Principles of Programming Languages, Spring 2023 11

Polymorphic Lists

Question (Exercise 23.4.3)
Using map as a model, write a polymorphic list-reversing function: reverse : ∀ X. List X → List X.

Solution

rev_append = λ X. fix (λ ra:(List X)→(List X)→(List X). λ l1:(List X). λ l2:(List X).
if isnil [X] l1 then l2
else ra (tail [X] l1) (cons [X] (head [X] l1) l2));

▶ rev_append : ∀ X. List X → List X → List X

reverse = λ X. λ l: List X. rev_append [X] l (nil [X]);
▶ reverse : ∀ X. List X → List X

Design Principles of Programming Languages, Spring 2023 12

Polymorphic Lists

List as a Type Constructor
We have assumed the language has the following primitives:

nil : ∀ X. List X isnil : ∀ X. List X → Bool
cons : ∀ X. X → List X → List X head : ∀ X. List X → X

tail : ∀ X. List X → List X

Aside
We can use recursive types to implement List, e.g.,

nil = λ X. <nil=Unit> as (µT. <nil:Unit, cons:{X,T});
▶ nil : ∀ X. µT. <nil:Unit, cons:{X,T}>

Design Principles of Programming Languages, Spring 2023 13

Church Encodings: Booleans

Remark
In Chapter 5.2, we saw that booleans, numbers, lists, etc. can be encoded as functions.
tru = λ t. λ f. t; fls = λ t. λ f. f;

CBool = ∀ X. X→X→ X;

tru = (λ X. λ t:X. λ f:X. t) as CBool;
▶ tru : CBool
fls = (λ X. λ t:X. λ f:X. f) as CBool;
▶ fls : CBool

Question
Why does the definition CBool characterize booleans?

Design Principles of Programming Languages, Spring 2023 14

Church Encodings: Booleans
Typing Rules for Booleans

Γ ` true : Bool T-TRUE
Γ ` false : Bool T-FALSE

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
T-IF

Observation
The definition CBool = ∀ X. X→X→ X encodes the typing rule (T-IF).

PRINCIPLE
Encode typing rules for destructors as polymorphic function types.

Example
Using booleans are directly applying their corresponding polymorphic functions.
test = λ Y. λ t1:CBool. λ t2:Y. λ t3:Y. t1 [Y] t2 t3;
▶ test : ∀ Y. CBool → Y → Y → Y
Design Principles of Programming Languages, Spring 2023 15

Church Encodings: Booleans
Question
Can test be used as conditional expressions?

Observation
Under call-by-value, test [T] t1 t2 t3 (where T is the type of t2, t3) evaluates both t2 and t3.

Solution: Dummy Abstractions
CBool = ∀ X. (Unit→X)→(Unit→X)→ X;
test = λ Y. λ t1:CBool. λ t2:(Unit→Y). λ t3:(Unit→Y). t1 [Y] t2 t3;
▶ test: ∀ Y. CBool → (Unit→Y) → (Unit→Y) → Y
We can encode if t1 then t2 else t3 as test [T] t1 (λ_:Unit. t2) (λ_:Unit. t3).

Question
Write down the encodings for true and falsewith dummy abstractions.
Design Principles of Programming Languages, Spring 2023 16

Church Encodings: Sums
Question
Recall that with sum types, we can define the boolean type as Unit+ Unit and literals as inl unit, inr unit.
Can you define the encodings of general sum types T1 + T2?

Hint: write down the typing rule for using sum types.

Solution
Let the type constructor T1 + T2 be defined as

∀ X. (T1→X)→(T2→X)→X
Then the constructors and the destructor for T1 + T2 can be defined as follows:

inl = λ v:T1. (λ X. λ l:(T1→X). λ r:(T2→X). l v) as (T1 + T2);
▶ inl : T1 → (T1 + T2)
inr = λ v:T2. (λ X. λ l:(T1→X). λ r:(T2→X). r v) as (T1 + T2);
▶ inr : T2 → (T1 + T2)

Design Principles of Programming Languages, Spring 2023 17

Church Encodings: Sums

test = λ Y. λ t1:(T1 + T2). λ t2:(T1→Y). λ t3:(T2→Y). t1 [Y] t2 t3;
▶ test : ∀ Y. (T1 + T2) → (T1→Y) → (T2→Y) → Y

Question
How to encode case t1 of inl x⇒t2 | inr x⇒t3?

Solution
test [T] (λx:T1. t2) (λx:T2. t3).

Design Principles of Programming Languages, Spring 2023 18

Church Encodings: Numbers
Remark (Church Numerals)
c0 = λ s. λ z. z; c2 = λ s. λ z. s (s z);
c1 = λ s. λ z. s z; c3 = λ s. λ z. s (s (s z));

CNat = ∀ X. (X→X) → X → X;
c0 = (λ X. λ s:X→X. λ z:X. z) as CNat;
▶ c0 : CNat
c1 = (λ X. λ s:X→X. λ z:X. s z) as CNat;
▶ c1 : CNat

Question
What are the typing rules for using numbers, with respect to the polymorphic type CNat?

Γ ` t1 : Nat Γ ,y : T ` t2 : T Γ ` t3 : T

Γ ` usenat t1 with succ(y) ⇒ t2 | zero ⇒ t3 : T

Design Principles of Programming Languages, Spring 2023 19

Church Encodings: Numbers

csucc = λ n:CNat. (λ X. λ s:X→X. λ z:X. s (n [X] s z)) as CNat;
▶ csucc : CNat → CNat

cplus = λ m:CNat. λ n:CNat. m [CNat] csucc n;
▶ cplus : CNat → CNat → CNat

Remark
We do not use recursion to define cplus!

Question
Define a function cmult that calculates the product of two numbers.

Design Principles of Programming Languages, Spring 2023 20

Church Encodings: Lists
Remark
We have seen List T as a primitive type or as a recursive type. Can we encode it in pure System F?

PRINCIPLE
Encode typing rules for destructors as polymorphic function types.

Γ ` t1 : List T Γ ,h : T ,y : S ` t2 : S Γ ` t3 : S

Γ ` uselist t1 with cons(h,y) ⇒ t2 | nil ⇒ t3 : S

List T = ∀ X. (T→X→X) → X → X;

nil = λ T. (λ X. λ c:(T→X→ X). λ n:X. n) as List T;
▶ nil : ∀ T. List T
cons = λ T. λ hd:T. λ tl:(List T).

(λ X. λ c:(T→X→X). λ n:X. c hd (tl [X] c n)) as List T;
▶ cons : ∀ T. T → List T → List T
Design Principles of Programming Languages, Spring 2023 21

Church Encodings: Lists
isnil = λ T. λ l:(List T). l [Bool] (λ _:T. λ _:Bool. false) true;
▶ isnil : ∀ T. List T → Bool
head = λ T. λ l:(List T). l [T] (λ hd:T. λ _:T. hd) (diverge [T] unit);
▶ head : ∀ T. List T → T

Question
Can you define a function sum : List Nat -> Nat without using fix?

Solution
sum = λ l:(List Nat). l [Nat] (λ hd:Nat. λ tl:Nat. hd + tl) 0;
▶ sum : List Nat → Nat

Design Principles of Programming Languages, Spring 2023 22

Church Encodings: Inductive Types

Aside
Recall the rule for iteration on NatList (from the lecture on recursive types):

Γ ` t1 : NatList Γ , x : <nil : Unit, cons : {Nat,S}> ` t2 : S

Γ ` iter [NatList] t1 with x.t2 : S

The rule is very similar to the aforementioned rule that is internalized by ∀ X. (Nat→X→ X) → X → X:

Γ ` t1 : List T Γ ,h : T ,y : S ` t2 : S Γ ` t3 : S

Γ ` uselist t1 with cons(h,y) ⇒ t2 | nil ⇒ t3 : S

In a similar way, we can encode general inductive (and also coinductive) types in System F.

Design Principles of Programming Languages, Spring 2023 23

Church Encodings: Pairs

Typing Rules for Pairs

Γ ` t1 : T11 × T12

Γ ` t1.1 : T11
T-PROJ1

Γ ` t1 : T11 × T12

Γ ` t1.2 : T12
T-PROJ2

Γ ` t1 : T11 × T12 Γ , x : T11,y : T12 ` t2 : S

Γ ` let {x,y} = t1 in t2 : S
T-LETPAIR

Pair T1 T2 = ∀ X. (T1→T2→X) → X

Design Principles of Programming Languages, Spring 2023 24

Church Encodings: Pairs

Pair T1 T2 = ∀ X. (T1→T2→X) → X;

pair = λ T1. λ T2. λ x:T1. λ y:T2. (λ X. λ p:(T1→T2→X). p x y) as Pair T1 T2;
▶ pair : ∀ T1. ∀ T2. T1 → T2 → Pair T1 T2

fst = λ T1. λ T2. λ p:(Pair T1 T2). p [T1] (λ x:T1. λ _:T2. x);
▶ fst : ∀ T1. ∀ T2. Pair T1 T2 → T1
snd = λ T1. λ T2. λ p:(Pair T1 T2). p [T2] (λ _:T1. λ y:T2. y);
▶ snd : ∀ T1. ∀ T2. Pair T1 T2 → T2

Design Principles of Programming Languages, Spring 2023 25

Properties
Preservation, Progress, Normalization, Parametricity, Impredicativity

Design Principles of Programming Languages, Spring 2023 26

Basic Properties

THEOREM (PRESERVATION)
If Γ ` t : T and t −→ t ′, then Γ ` t ′ : T .

THEOREM (PROGRESS)
If t is a closed, well-typed term, then either t is a value or there is some t ′ with t −→ t ′.

THEOREM (NORMALIZATION)
Well-typed System-F terms are normalizing, i.e., the evaluation of every well-typed term terminates.

Question (Homework)
Exercises 23.5.1 or 23.5.2: prove preservation or progress of System F.

Design Principles of Programming Languages, Spring 2023 27

Parametricity
Observation
Polymorphic types severely constrain the behavior of their elements.

• If ∅ ` t : ∀X.X → X, then t is (essentially) the identity function.
• If ∅ ` t : ∀X.X → X → X, then t is (essentially) either tru (λX. λt:X. λf:X. t) or fls (λX. λt:X. λf:X. f).

Definition (Parametricity)
Properties of a term that can be proved knowing only its type are called parametricity.
Such properties are often called free theorems as they come from typing for free.

Aside (Read More)

• J. C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Information Processing, 513–523.
• P. Wadler. 1989. Theorems for free! In Functional Programming Languages and Computer Architecture (FPCA’89),

347–359. DOI: 10.1145/99370.99404.
Design Principles of Programming Languages, Spring 2023 28

https://doi.org/10.1145/99370.99404

Parametricity: The Idea

PROPOSITION
For any closed term id : ∀X.X → X, for any type T and any property P of the type T , if P holds of t : T , then P holds
of id [T] t : T .

Remark
P needs to be closed under head expansion, i.e., if t −→ t ′ and P holds of t ′ : T , then P also holds of t : T .

Example
Fix t0 : T . Consider Pt0 that holds of t1 : T iff t1 is equivalent to t0 (i.e., t1 =β t0).
Obviously Pt0 holds of t0 itself.
By the proposition above, Pt0 holds of id [T] t0.
Thus, id [T] t0 is equivalent to t0.

Design Principles of Programming Languages, Spring 2023 29

Parametricity: The Idea

PROPOSITION
For any closed term b : ∀X.X → X → X, for any type T and any property P of type T , if P holds of m : T and of
n : T , then P holds of b [T]mn.

Example
Fix t0 : T and t1 : T . Consider Pt0,t1 that holds of t2 : T iff t2 is equivalent to either t0 or t1.
Obviously Pt0,t1 holds of both t0 and t1.
By the proposition above, Pt0,t1 holds of b [T] t0 t1.
Thus, b [T] t0 t1 is equivalent to either t0 or t1.

Design Principles of Programming Languages, Spring 2023 30

Parametricity: The Idea

PROPOSITION (UNARY)
For any closed term id : ∀X.X → X, for any type T and any property P of the type T , if P holds of t : T , then P holds
of id [T] t : T .

PROPOSITION (BINARY)
For any closed term id : ∀X.X → X, for any types T , T ′ and any binary relation R between T and T ′, if R relates
t : T to t ′ : T ′, then R relates id [T] t : T to id [T ′] t ′ : T ′.

Example (A Free Theorem from id : ∀X.X → X)
Let g : T → T ′ be an arbitrary function. For any t : T , it holds that id [T ′] (g t) is equivalent to g (id [T] t).

Design Principles of Programming Languages, Spring 2023 31

Impredicativity
Remark (Russell’s Paradox)
Let R be the set of sets that are not a member of themselves, i.e.,

R
def
= {x | x 6∈ x},

then we can see that R ∈ R ⇐⇒ R 6∈ R, which yields a paradox.

Observation
The paradox comes of letting the x be the very “set” R that is being defined by the membership condition.
Intuitively, impredicativity means self-referencing definitions.

System F is Impredicative
The type variable X in the type T = ∀X.X → X ranges over all types, including T itself.
Fortunately, Girard shows that System F is logically consistent.

Design Principles of Programming Languages, Spring 2023 32

Type Reconstruction

Design Principles of Programming Languages, Spring 2023 33

Erasure & Type Reconstruction

erase(x) def
= x

erase(λx:T1. t2)
def
= λx. erase(t2)

erase(t1 t2)
def
= erase(t1) erase(t2)

erase(λX. t2)
def
= erase(t2)

erase(t1 [T2])
def
= erase(t1)

Definition (Type Reconstruction)
Given an untyped term m, whether we can find some well-typed term t such that erase(t) = m.

THEOREM (WELLS, 19943)
Type reconstruction for System F is undecidable.

3 J. B. Wells. 1994. Typability and Type Checking in the Second-Order λ-Calculus Are Equivalent and Undecidable. In Logic in Computer Science (LICS’94), 176–185. DOI: 10.1109/LICS.1994.316068.
Design Principles of Programming Languages, Spring 2023 34

https://doi.org/10.1109/LICS.1994.316068

Partial Erasure & Type Reconstruction

erasep(x)
def
= x

erasep(λx:T1. t2)
def
= λx:T1. erasep(t2)

erasep(λX. t2)
def
= λX. erasep(t2)

erasep(t1 [T2])
def
= erasep(t1) []

THEOREM (BOEHM 19854, 19895)
It is undecidable whether, given a closed term s in which type applications are marked but the arguments are
omitted, there is some well-typed System-F term t such that erasep(t) = s.

Question
Is this the end of the story?

4 H.-J. Boehm. 1985. Partial Polymorphic Type Inference is Undecidable. In Symp. on Foundations of Computer Science (SFCS’85), 339–345. DOI: 10.1109/SFCS.1985.44.
5 H.-J. Boehm. 1989. Type Inference in the Presence of Type Abstraction. In Prog. Lang. Design and Impl. (PLDI’89), 192–206. DOI: 10.1145/73141.74835.

Design Principles of Programming Languages, Spring 2023 35

https://doi.org/10.1109/SFCS.1985.44
https://doi.org/10.1145/73141.74835

Fragments of System F
Prenex Polymorphism

• Type variables range only over quantifier-free types (monotypes).
• Quantified types (polytypes) are not allows to appear on the left-hand sides of arrows.

Rank-2 Polymorphism
A type is said to be of rank 2 if no path from its root to a ∀ quantifier passes to the left of 2 or more arrows.

(∀X.X → X) → Nat 3
Nat → ((∀X.X → X) → (Nat → Nat)) 3

((∀X.X → X) → Nat) → Nat 7

Remark
Prenex polymorphism is a predicative and rank-1 fragment of System F.
Type reconstruction for ranks 2 and lower is decidable!
Design Principles of Programming Languages, Spring 2023 36

Homework

Do one of them!

Question (Exercise 23.5.1)
If Γ ` t : T and t −→ t ′, then Γ ` t ′ : T .

Question (Exercise 23.5.2)
If t is a closed, well-typed term, then either t is a value or else there is some t ′ with t −→ t ′.

Design Principles of Programming Languages, Spring 2023 37

