

编程语言的设计原理 Design Principles of Programming Languages

Haiyan Zhao, Di Wang 赵海燕,王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 202;

Chap 23: Universal Types

Polymorphism System F Examples Properties Type Reconstruction

Abstraction Principle

Example

Suppose we want to define a function double that applies its 1st argument twice to its 2nd:

They share the same behavior and the same body term.

PRINCIPLE (ABSTRACTION)

Each significant piece of functionality in a program should be implemented in just one place in the source code.

```
double = \lambda \times . \lambda f: \times \to \times . \lambda a: \times . f (f a);
```

Polymorphism

Parametric Polymorphism

Allow a single piece of code to be typed "generically" using type variables.

```
id = \lambda X. \lambda x: X. x;

\blacktriangleright id : \forall X. X \rightarrow X
```

Ad-hoc Polymorphism

Allow a polymorphic value to exhibit different behaviors when "viewed" at different types.

- Overloading: 1+2 1.0+2.0 "we"+"you"
- Typeclasses: (+) :: Num a => a -> a -> a

Subtype Polymorphism

Allow a single term to have many types using the rule of subsumption: $\frac{\Gamma \vdash t: S \qquad S <: T}{\Gamma \vdash t: T}.$

The Most Powerful Form of Parametric Polymorphism

System F

Some Historical Accounts

- System F was introduced by Girard (1972) in the context of proof theory.¹
- System F was independently developed by Reynolds (1974) in the context of programming languages.²
- Reynolds called System F the polymorphic lambda-calculus.

PRINCIPLE

System F is a straightforward extension of λ_{\rightarrow} .

- In λ_{\rightarrow} , we use λx :T. t to abstract terms out of terms.
- In System F, we introduce λX . t to abstract **types** out of terms.

Design Principles of Programming Languages, Spring 202

^{1].-}Y. Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l'arithmétique d'ordre supérieur. PhD thesis. Université Paris 7.

²]. C. Reynolds. 1974. Towards a Theory of Type Structure. In Programming Symposium, Proceedings Colloque sur la Programmation, 408–423. DOI: 10.1007/3-540-06859-7_148.

Syntax and Evaluation

Syntax

$$t := \dots | \lambda X. t | t [T]$$
$$v := \dots | \lambda X. t$$

Evaluation

$$\frac{t_1 \longrightarrow t_1'}{t_1 \, [T_2] \longrightarrow t_1' \, [T_2]} \, \text{E-TAPP} \qquad \qquad \overline{(\lambda X. \, t_{12}) \, [T_2] \longrightarrow [X \mapsto T_2] t_{12}} \, \text{E-TAPPTabs}$$

Example

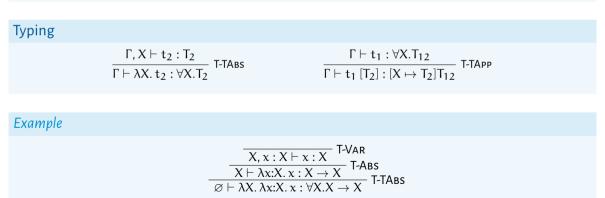
Recall that we define $id \stackrel{\text{def}}{=} \lambda X. \lambda x: X. x$. Thus

 $\mathit{id} [\operatorname{Nat}] \longrightarrow [X \mapsto \operatorname{Nat}](\lambda x : X. x) = \lambda x : \operatorname{Nat.} x$

Types, Type Contexts, and Typing

Types and Type Contexts

 $T := X | T \to T | \forall X.T$ $\Gamma := \emptyset | \Gamma, x : T | \Gamma, X$



Examples

Polymorphic Functions Polymorphic Lists Church Encodings

Polymorphic Functions

```
double = \lambda X. \lambda f: X \rightarrow X. \lambda a: X. f (f a);

\blacktriangleright double : \forall X. (X \rightarrow X) \rightarrow X \rightarrow X

double [Nat] (\lambda x: Nat. succ(succ(x))) 3;

\triangleright 7 : Nat
```

```
 \begin{split} & \texttt{selfApp} = \boldsymbol{\lambda} \times : \forall X. X \rightarrow X. \ x \ [\forall X. X \rightarrow X] \ x; \\ & \boldsymbol{\triangleright} \ \texttt{selfApp} : \ (\forall X. \ X \rightarrow X) \ \rightarrow \ (\forall X. \ X \rightarrow X) \end{split}
```


Polymorphic Lists

List as a Type Constructor

We assume the language has the following primitives:

```
nil : \forall X. List X
cons : \forall X. X \rightarrow List X \rightarrow List X
```

Example

```
\begin{array}{l} \mathsf{map} = \lambda X. \ \lambda Y. \ \lambda f: \ X \rightarrow Y. \\ (\mathbf{fix} \ (\lambda \mathsf{m}: \ (\mathsf{List} \ X) \ \rightarrow \ (\mathsf{List} \ Y). \\ \lambda l: \ \mathsf{List} \ X. \\ & \mathbf{if} \ \mathsf{isnil} \ [X] \ l \ \mathbf{then} \ \mathsf{nil} \ [Y] \\ & \mathbf{else} \ \mathsf{cons} \ [Y] \ (f \ (\mathsf{head} \ [X] \ l)) \ (\mathsf{m} \ (\mathsf{tail} \ [X] \ l)))); \end{array}
\blacktriangleright \ \mathsf{map} : \ \forall X. \ \forall Y. \ (X \rightarrow Y) \ \rightarrow \ \mathsf{List} \ X \ \rightarrow \ \mathsf{List} \ Y \end{array}
```

Polymorphic Lists

Question (Exercise 23.4.3)

Using map as a model, write a polymorphic list-reversing function: reverse : $\forall X$. List $X \rightarrow List X$.

Solution

Polymorphic Lists

List as a Type Constructor

We have assumed the language has the following primitives:

```
nil : \forall X. List X
cons : \forall X. X \rightarrow List X \rightarrow List X
```

Aside

We can use recursive types to implement List, e.g.,

```
nil = λX. <nil=Unit> as (μT. <nil:Unit, cons:{X,T});

▶ nil : ∀X. μT. <nil:Unit, cons:{X,T}>
```

Church Encodings: Booleans

Remark

In Chapter 5.2, we saw that booleans, numbers, lists, etc. can be encoded as functions.

tru = λ t. λ f. t; fls = λ t. λ f. f;

```
CBool = \forall X. X \rightarrow X \rightarrow X;

tru = (\lambda X. \lambda t: X. \lambda f: X. t) as CBool;

\blacktriangleright tru : CBool

fls = (\lambda X. \lambda t: X. \lambda f: X. f) as CBool;

\blacktriangleright fls : CBool
```

Question

Why does the definition CBool characterize booleans?

Church Encodings: Booleans

Typing Rules for Booleans

 $\frac{\Gamma \vdash t_1: \texttt{Bool} \quad \Gamma \vdash t_2: \mathsf{T} \quad \Gamma \vdash t_3: \mathsf{T}}{\Gamma \vdash \texttt{if} \, t_1 \, \texttt{then} \, t_2 \, \texttt{else} \, t_3: \mathsf{T}} \; \mathsf{T}\text{-}\mathsf{IF}$

Observation

The definition CBool = $\forall X$. $X \rightarrow X \rightarrow X$ encodes the typing rule (T-IF).

PRINCIPLE

Encode typing rules for **destructors** as polymorphic function types.

Example

Using booleans are **directly applying** their corresponding polymorphic functions. test = λY . $\lambda t1$:CBool. $\lambda t2$:Y. $\lambda t3$:Y. t1 [Y] t2 t3; test : $\forall Y$. CBool $\rightarrow Y \rightarrow Y \rightarrow Y$

Church Encodings: Booleans

Question

Can test be used as conditional expressions?

Observation

Under call-by-value, test $[T] t_1 t_2 t_3$ (where T is the type of t_2, t_3) evaluates both t_2 and t_3 .

Solution: Dummy Abstractions

Question

Write down the encodings for true and false with dummy abstractions.

Design Principles of Programming Languages, Spring 2023

Church Encodings: Sums

Question

Recall that with sum types, we can define the boolean type as Unit + Unit and literals as inlunit, inrunit. Can you define the encodings of general sum types $T_1 + T_2$?

Hint: write down the typing rule for **using** sum types.

Solution

Let the type constructor $\mathsf{T}_1+\mathsf{T}_2$ be defined as

 $\forall X. (T_1 \rightarrow X) \rightarrow (T_2 \rightarrow X) \rightarrow X$

Then the constructors and the destructor for $T_1 + T_2$ can be defined as follows:

$$\begin{array}{l} \text{inl} = \lambda \, v: T_1. \ (\lambda X. \ \lambda 1: (T_1 \rightarrow X). \ \lambda \, r: (T_2 \rightarrow X). \ l \ v) \text{ as } (T_1 + T_2); \\ \blacktriangleright \ \text{inl} : T_1 \rightarrow (T_1 + T_2) \\ \text{inr} = \lambda \, v: T_2. \ (\lambda X. \ \lambda 1: (T_1 \rightarrow X). \ \lambda \, r: (T_2 \rightarrow X). \ r \ v) \text{ as } (T_1 + T_2); \\ \blacktriangleright \ \text{inr} : T_2 \rightarrow (T_1 + T_2) \end{array}$$

Church Encodings: Sums

test = λY . $\lambda t1: (T_1 + T_2)$. $\lambda t2: (T_1 \rightarrow Y)$. $\lambda t3: (T_2 \rightarrow Y)$. t1 [Y] t2 t3; \blacktriangleright test : $\forall Y$. $(T_1 + T_2) \rightarrow (T_1 \rightarrow Y) \rightarrow (T_2 \rightarrow Y) \rightarrow Y$

Question

```
How to encode case t_1 of inl x \Rightarrow t_2 | inr x \Rightarrow t_3?
```

Solution

 $\texttt{test}\left[T\right](\lambda x{:}T_{1}{.}\,t_{2})\,(\lambda x{:}T_{2}{.}\,t_{3}).$

Church Encodings: Numbers

Remark (Church Numerals)

$c_0 = \lambda s. \lambda z.$	Ζ;	$c_2 = \lambda s.$	λz.	s (s z);
$c_1 = \lambda s. \lambda z.$	sz;	$c_3 = \lambda s.$	λz.	s (s (s z));

CNat =
$$\forall X. (X \rightarrow X) \rightarrow X \rightarrow X;$$

 $c_0 = (\lambda X. \lambda s: X \rightarrow X. \lambda z: X. z)$ as CNat;
 $\blacktriangleright c_0 : CNat$
 $c_1 = (\lambda X. \lambda s: X \rightarrow X. \lambda z: X. s z)$ as CNat;
 $\blacktriangleright c_1 : CNat$

Question

What are the typing rules for using numbers, with respect to the polymorphic type CNat?

$$\label{eq:constraint} \begin{array}{c|c} \Gamma \vdash t_1 : \texttt{Nat} & \Gamma, y : \mathsf{T} \vdash t_2 : \mathsf{T} & \Gamma \vdash t_3 : \mathsf{T} \\ \hline & \mathsf{F} \text{ usenat } t_1 \text{ with } \texttt{succ}(y) \Rightarrow t_2 \mid \texttt{zero} \Rightarrow t_3 : \mathsf{T} \end{array}$$

Church Encodings: Numbers


```
csucc = \lambda n:CNat. (\lambdaX. \lambdas:X\rightarrowX. \lambdaz:X. s (n [X] s z)) as CNat;

\blacktriangleright csucc : CNat \rightarrow CNat
```

cplus = λ m:CNat. λ n:CNat. m [CNat] csucc n; \blacktriangleright cplus : CNat \rightarrow CNat \rightarrow CNat

Remark

We do not use recursion to define cplus!

Question

Define a function cmult that calculates the product of two numbers.

Church Encodings: Lists

Remark

We have seen List T as a primitive type or as a recursive type. Can we encode it in pure System F?

PRINCIPLE

Encode typing rules for **destructors** as polymorphic function types.

 $\frac{\Gamma \vdash t_1 : \text{List } T \quad \Gamma, h : T, y : \mathbf{S} \vdash t_2 : \mathbf{S} \quad \Gamma \vdash t_3 : \mathbf{S}}{\Gamma \vdash \textbf{uselist } t_1 \text{ with } \text{cons}(h, y) \Rightarrow t_2 \mid \text{nil} \Rightarrow t_3 : \mathbf{S}}$

List T = $\forall X. (T \rightarrow X \rightarrow X) \rightarrow X \rightarrow X;$

Church Encodings: Lists


```
 \begin{array}{l} \text{isnil} = \lambda \mathsf{T}. \ \lambda \text{l:}(\text{List T}). \ 1 \ [\text{Bool}] \ (\lambda_:\mathsf{T}. \ \lambda_:\text{Bool. false}) \ \text{true;} \\ \hline \quad \text{isnil} : \ \forall \mathsf{T}. \ \text{List T} \rightarrow \text{Bool} \\ \text{head} = \lambda \mathsf{T}. \ \lambda \text{l:}(\text{List T}). \ 1 \ [\mathsf{T}] \ (\lambda \text{hd:}\mathsf{T}. \ \lambda_:\mathsf{T}. \ \text{hd}) \ (\text{diverge [T] unit}); \\ \hline \quad \text{head} : \ \forall \mathsf{T}. \ \text{List T} \rightarrow \mathsf{T} \end{array}
```

Question

Can you define a function sum : List Nat -> Nat without using fix?

Solution

```
sum = \lambda l:(List Nat). l [Nat] (\lambda hd:Nat. \lambda tl:Nat. hd + tl) 0;

\blacktriangleright sum : List Nat \rightarrow Nat
```

Church Encodings: Inductive Types

Aside

Recall the rule for iteration on NatList (from the lecture on recursive types):

$$\Gamma \vdash t_1 : NatList \qquad \Gamma, x : < nil : Unit, cons : {Nat, S} > \vdash t_2 : S$$

 $\Gamma \vdash iter [NatList] t_1 with x.t_2 : S$

The rule is very similar to the aforementioned rule that is **internalized** by $\forall X$. (Nat $\rightarrow X \rightarrow X \rightarrow X \rightarrow X$:

$$\Gamma \vdash t_1 : \text{ListT} \qquad \Gamma, h : T, y : S \vdash t_2 : S \qquad \Gamma \vdash t_3 : S$$

 $\Gamma \vdash \textbf{uselist} \, t_1 \, \textbf{with} \, \texttt{cons}(h, y) \Rightarrow t_2 \mid \texttt{nil} \Rightarrow t_3 : \textbf{S}$

In a similar way, we can encode general inductive (and also coinductive) types in System F.

Church Encodings: Pairs

Typing Rules for Pairs

$$\begin{array}{l} \frac{\Gamma \vdash t_1:T_{11} \times T_{12}}{\Gamma \vdash t_1.1:T_{11}} & \text{T-Proj:} \\ \\ \frac{\Gamma \vdash t_1.1:T_{11} \times T_{12}}{\Gamma \vdash t_1.2:T_{12}} & \Gamma, x:T_{11}, y:T_{12} \vdash t_2:S \\ \\ \frac{\Gamma \vdash t_1:T_{11} \times T_{12}}{\Gamma \vdash \text{let}\{x,y\} = t_1 \text{ in } t_2:S} & \text{T-LetPair} \end{array}$$

Pair T1 T2 = $\forall X. (T1 \rightarrow T2 \rightarrow X) \rightarrow X$

Church Encodings: Pairs

Pair T1 T2 = $\forall X. (T1 \rightarrow T2 \rightarrow X) \rightarrow X;$

```
pair = \lambda T1. \lambda T2. \lambda x:T1. \lambda y:T2. (\lambdaX. \lambdap:(T1\rightarrowT2\rightarrowX). p x y) as Pair T1 T2;

b pair : \forall T1. \forall T2. T1 \rightarrow T2 \rightarrow Pair T1 T2
```

```
fst = \lambdaT1. \lambdaT2. \lambdap:(Pair T1 T2). p [T1] (\lambdax:T1. \lambda_{-}:T2. x);

\blacktriangleright fst : \forallT1. \forallT2. Pair T1 T2 \rightarrow T1

snd = \lambdaT1. \lambdaT2. \lambdap:(Pair T1 T2). p [T2] (\lambda_{-}:T1. \lambday:T2. y);

\triangleright snd : \forallT1. \forallT2. Pair T1 T2 \rightarrow T2
```


Properties

Preservation, Progress, Normalization, Parametricity, Impredicativity

Basic Properties

THEOREM (PRESERVATION)

If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

THEOREM (PROGRESS)

If t is a closed, well-typed term, then either t is a value or there is some t' with t \longrightarrow t'.

THEOREM (NORMALIZATION)

Well-typed System-F terms are normalizing, i.e., the evaluation of every well-typed term terminates.

Question (Homework)

Exercises 23.5.1 or 23.5.2: prove preservation or progress of System F.

Parametricity

Observation

Polymorphic types severely constrain the behavior of their elements.

- If $\varnothing \vdash t : \forall X.X \to X$, then t is (essentially) the identity function.
- If $\varnothing \vdash t : \forall X.X \to X \to X$, then t is (essentially) either tru ($\lambda X. \lambda t: X. \lambda f: X. t$) or fls ($\lambda X. \lambda t: X. \lambda f: X. f$).

Definition (Parametricity)

Properties of a term that can be proved **knowing only its type** are called parametricity. Such properties are often called **free theorems** as they come from typing **for free**.

Aside (Read More)

- J. C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Information Processing, 513–523.
- P. Wadler. 1989. Theorems for free! In Functional Programming Languages and Computer Architecture (FPCA'89), 347–359. DOI: 10.1145/99370.99404.

Parametricity: The Idea

PROPOSITION

For any closed term $id : \forall X.X \rightarrow X$, for any type T and any property \mathcal{P} of the type T, if \mathcal{P} holds of t : T, then \mathcal{P} holds of id [T] t : T.

Remark

 \mathcal{P} needs to be closed under **head expansion**, i.e., if $t \longrightarrow t'$ and \mathcal{P} holds of t' : T, then \mathcal{P} also holds of t : T.

Example

Fix $t_0 : T$. Consider \mathcal{P}_{t_0} that holds of $t_1 : T$ iff t_1 is equivalent to t_0 (i.e., $t_1 =_{\beta} t_0$). Obviously \mathcal{P}_{t_0} holds of t_0 itself. By the proposition above, \mathcal{P}_{t_0} holds of *id* [T] t_0 . Thus, *id* [T] t_0 is equivalent to t_0 .

Parametricity: The Idea

PROPOSITION

For any closed term $b : \forall X.X \rightarrow X \rightarrow X$, for any type T and any property \mathcal{P} of type T, if \mathcal{P} holds of $\mathfrak{m} : \mathsf{T}$ and of $\mathfrak{n} : \mathsf{T}$, then \mathcal{P} holds of b [T] $\mathfrak{m} \mathfrak{n}$.

Example

Fix $t_0 : T$ and $t_1 : T$. Consider \mathcal{P}_{t_0, t_1} that holds of $t_2 : T$ iff t_2 is equivalent to either t_0 or t_1 . Obviously \mathcal{P}_{t_0, t_1} holds of both t_0 and t_1 . By the proposition above, \mathcal{P}_{t_0, t_1} holds of b [T] t_0 t_1 . Thus, b [T] t_0 t_1 is equivalent to either t_0 or t_1 .

Parametricity: The Idea

PROPOSITION (UNARY)

For any closed term $id : \forall X.X \rightarrow X$, for any type T and any property \mathcal{P} of the type T, if \mathcal{P} holds of t : T, then \mathcal{P} holds of id [T] t : T.

PROPOSITION (BINARY)

For any closed term $id : \forall X.X \rightarrow X$, for any types T, T' and any binary relation \mathcal{R} between T and T', if \mathcal{R} relates t : T to t' : T', then \mathcal{R} relates id [T] t : T to id [T'] t' : T'.

Example (A Free Theorem from $id: \forall X.X \rightarrow X$)

Let $g: T \rightarrow T'$ be an arbitrary function. For any t: T, it holds that id [T'] (g t) is equivalent to g (id [T] t).

Impredicativity

Remark (Russell's Paradox)

Let R be the set of sets that are not a member of themselves, i.e.,

 $R \stackrel{\text{def}}{=} \{ x \mid x \not\in x \},\$

then we can see that $R \in R \iff R \not\in R$, which yields a paradox.

Observation

The paradox comes of letting the x be the very "set" R that is being defined by the membership condition. Intuitively, impredicativity means **self-referencing definitions**.

System F is Impredicative

The type variable X in the type $T = \forall X.X \rightarrow X$ ranges over all types, **including** T **itself**. Fortunately, Girard shows that System F is **logically consistent**.

Type Reconstruction

Design Principles of Programming Languages, Spring 2023

Erasure & Type Reconstruction

 $erase(x) \stackrel{\text{def}}{=} x$ $erase(\lambda x:T_1.t_2) \stackrel{\text{def}}{=} \lambda x. erase(t_2)$ $erase(t_1 t_2) \stackrel{\text{def}}{=} erase(t_1) erase(t_2)$ $erase(\lambda X.t_2) \stackrel{\text{def}}{=} erase(t_2)$ $erase(t_1 [T_2]) \stackrel{\text{def}}{=} erase(t_1)$

Definition (Type Reconstruction)

Given an untyped term m, whether we can find some well-typed term t such that erase(t) = m.

THEOREM (WELLS, 1994³)

Type reconstruction for System F is **undecidable**.

^{3).} B. Wells. 1994. Typability and Type Checking in the Second-Order λ-Calculus Are Equivalent and Undecidable. In Logic in Computer Science (LICS'94), 176–185. DOI: 10.1109/LICS 1994.316068. Design Principles of Programming Languages, Spring 2023

Partial Erasure & Type Reconstruction

 $erase_{p}(\mathbf{x}) \stackrel{\text{def}}{=} \mathbf{x}$ $erase_{p}(\lambda \mathbf{x}:\mathsf{T}_{1}.\mathbf{t}_{2}) \stackrel{\text{def}}{=} \lambda \mathbf{x}:\mathsf{T}_{1}.erase_{p}(\mathbf{t}_{2})$ $erase_{p}(\lambda \mathbf{X}.\mathbf{t}_{2}) \stackrel{\text{def}}{=} \lambda \mathbf{X}.erase_{p}(\mathbf{t}_{2})$ $erase_{p}(\mathbf{t}_{1}[\mathsf{T}_{2}]) \stackrel{\text{def}}{=} erase_{p}(\mathbf{t}_{1}) []$

THEOREM (BOEHM 1985⁴, 1989⁵)

It is **undecidable** whether, given a closed term s in which type applications are marked but the arguments are omitted, there is some well-typed System-F term t such that $erase_p(t) = s$.

Question

Is this the end of the story?

Design Principles of Programming Languages, Spring 202

⁴H.-J. Boehm. 1985. Partial Polymorphic Type Inference is Undecidable. In Symp. on Foundations of Computer Science (SFCS'85), 339–345. DOI: 10.1109/SFCS.1985.44.

⁵H.-J. Boehm. 1989. Type Inference in the Presence of Type Abstraction. In Prog. Lang. Design and Impl. (PLDI'89), 192–206. DOI: 10.1145/73141.74835.

Fragments of System F

Prenex Polymorphism

- Type variables range only over quantifier-free types (monotypes).
- Quantified types (polytypes) are not allows to appear on the left-hand sides of arrows.

Rank-2 Polymorphism

A type is said to be of rank 2 if no path from its root to a \forall quantifier passes to the left of 2 or more arrows. $(\forall X.X \rightarrow X) \rightarrow \text{Nat} \qquad \checkmark$ $\text{Nat} \rightarrow ((\forall X.X \rightarrow X) \rightarrow (\text{Nat} \rightarrow \text{Nat})) \qquad \checkmark$ $((\forall X.X \rightarrow X) \rightarrow \text{Nat}) \rightarrow \text{Nat} \qquad \checkmark$

Remark

Prenex polymorphism is a predicative and rank-1 fragment of System F. Type reconstruction for ranks 2 and lower is **decidable**!

Homework

Do one of them!

Question (Exercise 23.5.1)

If $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Question (Exercise 23.5.2)

If t is a closed, well-typed term, then either t is a value or else there is some t' with t \longrightarrow t'.