wiTIE S Bt RIE
Design Principles of
Programming Languages

Haiyan Zhao, Di Wang
X, @

Peking University, Spring Term 2023

Chap 23: Universal Types

Polymorphism
System F
Examples
Properties

Type Reconstruction

Abstraction Principle

Example

Suppose we want to define a function double that applies its 1st argument twice to its 2nd:

doubleNat = Af:Nat—Nat. Aa:Nat. £ (f a);
doubleRcd = Af:{1:Bool}—{1:Bool}. Aa:{1:Bool}. £ (f a);
doubleFun = A f:(Nat—Nat)—(Nat—Nat). Aa:Nat—Nat. £ (f a);

They share the same behavior and the same body term.

PRINCIPLE (ABSTRACTION)

Each significant piece of functionality in a program should be implemented in just one place in the source code.

double = AX. Af:X—=X. Aa:X. £ (f a);

Polymorphism

Parametric Polymorphism

Allow a single piece of code to be typed “generically” using type variables.
id = AX. Ax:X. X;
» id : VX. X = X

Ad-hoc Polymorphism
Allow a polymorphic value to exhibit different behaviors when “viewed” at different types.
e Overloading: 1+2 1.0+2.0 '“we"+"you"

® Typeclasses: (+) :: Numa =>a ->a -> a

Subtype Polymorphism

NEt:S S<T

Allow a single term to have many types using the rule of subsumption: TEDT

System F

The Most Powerful Form of Parametric Polymorphism

System F

Some Historical Accounts

e System Fwas introduced by Girard (1972) in the context of proof theory.

e System Fwas independently developed by Reynolds (1974) in the context of programming languages.?
® Reynolds called System F the polymorphiclambda-calculus.

PRINCIPLE
System Fis a straightforward extension of A_, .
® InA_,,weuseAx:T. ttoabstract terms out of terms.

® |nSystem F, we introduce AX. t to abstract types out of terms.

1).-Y. Girard. 1972. prétati ionnelle et élimi de pures de d'ordre supérieur. PhD thesis. Université Paris 7.

23.C. Reynolds. 1974. Towards a Theory of Type Structure. In Programming Symposium, Proceedings Collo

0N, 408-423. DOI: 10.1007/3-540- 06859-7_148.

https://doi.org/10.1007/3-540-06859-7_148

Syntax and Evaluation

Syntax
= ... | AX.t] t[T]
vi=...|AX.t
Evaluation
t) — 1]

———— ETApp E-TAPPTABS

ty [T2] — t7 [T2] (AX.t12) [T2] — X = T2ltq2
Example

def

Recall that we define id = AX. Ax:X. x. Thus
id [Nat] — [X — Nat](Ax:X.x) = Ax:Nat.x

Types, Type Contexts, and Typing

Types and Type Contexts

Te=X|T—T|VXT

=g |Mx:T|T X
Typing

NXkEt: T MEty :VX.T
: 2:l2 o 1: VX2 T-TAPP
MEAX.t2 : VX. T, IMEty [T2]: X = T2l T2

Example

Xx XFx: X | UAR

T-ABS

XEAMX x: X=X T-TABS

FEAXAX. x: VXX = X

Examples

Polymorphic Functions

Polymorphic Lists
Church Encodings

Polymorphic Functions

id = AX. Ax:X. X;
» id : VX. X = X
id [Nat] o0;
» 0 : Nat

double = AX. Af:X—=X. Aa:X. £ (f a);
» double : VX. (X=X) = X — X
double [Nat] (Ax:Nat. succ(succ(x))) 3;
» 7 : Nat

selfApp = Ax:¥VX.X—=X. x [VX.X=X] x;
> selfApp : (VX. X=X) — (VX. X=X)

quadruple = AX. double [X—X] (double [X]);
» quadruple : VX. (X—=X) — X — X

Polymorphic Lists

List asa Type Constructor

We assume the language has the following primitives:
nil : VX. List X isnil : VX. List X — Bool
cons : VX. X — List X — List X head : VX. List X — X
tail : VX. List X — List X

Example

map = AX. AY. Af: X=Y.
(fix (Am: (List X) — (List Y).
Al: List X.
if isnil [X] 1 then nil [Y]
else cons [Y] (f (head [X] 1)) (m (tail [X] 1)))):
> map : VX. VY. (X=Y) — List X — List Y

Polymorphic Lists

Using map as a model, write a polymorphic list-reversing function: reverse : VX. List X — List X.

Solution

rev_append = AX. fix (Ara:(List X)—(List X)—(List X). A11l:(List X). Al2:(List X).
if isnil [X] 11 then 12
else ra (tail [X] 11) (cons [X] (head [X] 11) 12));:

» rev_append : VX. List X — List X — List X

reverse = AX. Al: List X. rev_append [X] 1 (nil [X]);
» reverse : VX. List X — List X

Polymorphic Lists

List asa Type Constructor

We have assumed the language has the following primitives:
nil : VX. List X

isnil : VX. List X — Bool
cons : VX. X — List X — List X

head : VX. List X — X
tail : VX. List X — List X

Aside
We can use recursive types to implement List, e.g.,

nil = AX. <nil=Unit> as (uT. <nil:Unit, cons:{X,T});
» nil : VX. uT. <nil:Unit, cons:{X,T}>

Church Encodings: Booleans

Remark

In Chapter 5.2, we saw that booleans, numbers, lists, etc. can be encoded as functions.
tru = At. Af. t; fls = At. Af. f;

(Bool = VX. X=>X—X;

tru = (AX. At:X. Af:X. t) as CBool;
» tru : (CBool
fls = (AX. At:X. Af:X. f) as CBool;
» fls : (Bool

Why does the definition CBoo1l characterize booleans?

Church Encodings: Booleans

Typing Rules for Booleans

I't7 :Bool FEt,:T F'Et3:T
—— T-TRUE —— T-FALSE - T-IF
I' - true : Bool I' false : Bool I'-iftg thentyelsets: T

The definition CBool = VX. X—X — X encodes the typing rule (T-IF).

PRINCIPLE

Encode typing rules for destructors as polymorphic function types.

Example

Using booleans are directly applying their corresponding polymorphic functions.
test = AY. Atl:CBool. At2:Y. At3:Y. tl [Y] t2 t3;
» test : VY. (Bool - Y =Y — Y

Church Encodings: Booleans

Can test be used as conditional expressions?

Under call-by-value, test [T] t; t, t3 (where T is the type of t,, t3) evaluates both t, and t3.

Solution: Dummy Abstractions

CBool = VX. (Unit—X)— (Unit—X) —X;
test = AY. Atl:CBool. At2:(Unit—Y). At3:(Unit—Y). t1 [Y] t2 t3;
» test: VY. (Bool — (Unit—Y) — (Unit—Y) — Y

We canencode if t; thenty elsetsastest[T]ty (A:Unit.t,) (A_:Unit.t3).

Write down the encodings for true and false with dummy abstractions.

Church Encodings: Sums

Recall that with sum types, we can define the boolean type asUnit 4+ Unit and literalsas inl unit, inrunit.
Can you define the encodings of general sum types T; + T5?

Hint: write down the typing rule for using sum types.

Solution
Let the type constructor T; + T, be defined as

VX, (T1=X) = (Ta—X) =X
Then the constructors and the destructor for Ty + T, can be defined as follows:

inl = Av:Ty. (AX. AL:(Ti—=X). Ar:(To—=X). 1 v) as (T1+T);
» inl : T; = (T1+T2)
int = Av:Tr. (AX. AL:(Ti—=X). Ar:(Th—=X). T v) as (Ty+T2);
» inr : T, — (T] +Tz)

Church Encodings: Sums

test = AY. Atl: (T4 +T2). At2:(T7—=Y). At3:(Tr—Y). t1 [Y] t2 t3;
p test : VY. (1+T) = (T1=Y) = (Th=Y) = Y

How to encode case t; of inl x=t, | int x=13?

Solution
test [T] (Ax:Ty. t2) (Ax:T,. t3).

Church Encodings: Numbers

Remark (Church Numerals)

Co = AS. Az. z; C2 = As. Az. s
C] = AS. Az. s z; c3 = As. Az. s (s (s 2));

CNat = VX. (X=X) = X = X;
co = (AX. As:X=X. Az:X. z) as CNat;

» o : CNat
c1 = (AX. As:X—=X. Az:X. s z) as CNat;
» c; : CNat

What are the typing rules for using numbers, with respect to the polymorphic type CNat?

'ty :Nat Fy:THt: T FEtzy:T
I'F usenat tywithsucc(y) =ty | zero=t3: T

Church Encodings: Numbers

csucc = An:CNat. (AX. As:X—=X. Az:X. s (n [X] s z)) as CNat;
» csucc : CNat — CNat

cplus = Am:CNat. An:CNat. m [CNat] csucc n;
» cplus : CNat — CNat — CNat

Remark

We do not use recursion to define cplus!

Define a function cmult that calculates the product of two numbers.

Church Encodings: Lists

Remark

We haveseen List T asa primitive type or as a recursive type. Can we encode it in pure System F?

PRINCIPLE

Encode typing rules for destructors as polymorphic function types.

Mty :ListT Mh:T,y:Skt:S FEt3:S
I'F uselisttywithcons(h,y) =ty | nil=1t3:S

List T = VX. (T=X—=X) — X = X;

nil = AT. (AX. Ac:(T=X—=X). An:X. n) as List T;
» nil : VT. List T

cons = AT. Ahd:T. Atl:(List T).

(AX. Ac: (T=X—=X). An:X. c hd (t1 [X] c n)) as List T;
» cons : VT. T — List T — List T

Church Encodings: Lists

isnil = AT. Al:(List T). 1 [Bool] (A _:T. A _:Bool. false) true;

» isnil : VT. List T — Bool

head = AT. Al:(List T). 1 [T] (Ahd:T. A_:T. hd) (diverge [T] unit);
» head : VT. List T = T

Canyoudefineafunctionsum : List Nat -> Natwithoutusing £ix?

Solution

sum = Al:(List Nat). 1 [Nat] (Ahd:Nat. Atl:Nat. hd + tl) O;
» sum : List Nat — Nat

Church Encodings: Inductive Types

Aside
Recall the rule for iteration on NatList (from the lecture on recursive types):

It :Natlist I x:<nil:Unit, cons: {Nat,S}>+1t,:S
I'iter [Natlist] t; withx.t; : S

The rule is very similar to the aforementioned rule thatis internalized by V X. (Nat—X —X) — X — X
'Ety:ListT Nh:T,y:SkFt;:S 'Et3:S
' uselistt;withcons(h,y) =ty | nil=1t3:S

In asimilar way, we can encode general inductive (and also coinductive) types in System F.

Church Encodings: Pairs

Typing Rules for Pairs

Fhty:Ty xT Fhty:Ty T
VT2 12 1 pron VT2 12 rpron

M'Et1.1:Tqq N'=t1.2:Tq2

'ty :Ty1 x T2 F,X:T”,y:T]z'—tzls
Fl—let{x,y}:’q inty: S

T-LETPAIR

Pair T1 T2 = VX. (T1=T2—X) — X

Church Encodings: Pairs

Pair T1 T2 = VX. (T1—=T2—=X) — X;

pair = AT1. AT2. Ax:T1. Ay:T2. (AX. Ap:(T1=T2—=X). p x y) as Pair T1 T2;
» pair : VT1. VT2. T1 — T2 — Pair T1 T2

fst = ATL. AT2. Ap:(Pair T1 T2). p [T1] (Ax:T1. A_:T2. x);
» fst : VT1. VT2. Pair T1 T2 — T1
snd = AT1. AT2. Ap:(Pair T1 T2). p [T2] (A_:T1. Ay:T2. y);
» snd : VT1. VT2. Pair T1 T2 — T2

Properties

Preservation, Progress, Normalization, Parametricity, Impredicativity

Basic Properties

THEOREM (PRESERVATION)
IfTFt:Tandt — t/,thenT Ht/: T.

THEOREM (PROGRESS)

If tis a closed, well-typed term, then either t is a value or there is some t” witht — t’.

THEOREM (NORMALIZATION)

Well-typed System-F terms are normalizing, i.e., the evaluation of every well-typed term terminates.

Exercises 23.5.1 0r 23.5.2: prove preservation or progress of System F.

Parametricity

Polymorphic types severely constrain the behavior of their elements.
o Ifgt t:VX.X = X, thentis (essentially) the identity function.
o Ifakt:VX.X = X — X, thentis (essentially) either tru AX. At:X. Af:X. t) or £1s AX. At:X. Af:X. f).

Properties of a term that can be proved knowing only its type are called parametricity.
Such properties are often called free theorems as they come from typing for free.

Aside (Read More)

®].C.Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. [n [nformation Processing, 513—523.

® P Wadler. 1989. Theorems for free! In Functional Programming Languages and Computer Architecture (FPCA'89),
347-359. DOI: 10.1145/99370.99404.

https://doi.org/10.1145/99370.99404

Parametricity: The Idea

PROPOSITION

Forany closed termid : VX.X — X, forany type T and any property P of the type T, if P holds of t : T, then P holds
ofid [T]t:T.

Remark
P needs to be closed under head expansion, i.e., ift — t’ and P holds of t’ : T, then P also holdsof t : T.

Example

Fixto : T. Consider Py, that holds of t7 : Tiff ty isequivalenttotg (i.e., t1 =g to).
Obviously P+, holds of ty itself.

By the proposition above, Py, holds of id [T] to.

Thus, id [T] to is equivalent to to.

Parametricity: The Idea

PROPOSITION

Forany closed term b : VX.X — X — X, forany type T and any property P of type T, if P holds of m : T and of
n:T,thenPholdsof b [T] mn.

Example

Fixto : Tand ty : T. Consider Py, ¢, thatholds of t, : Tiff t; isequivalentto eithertg ort;.
Obviously Py,,¢, holds of both tg and ty.

By the proposition above, P, ¢, holds of b [T] to t1.

Thus, b [T] tg t7 isequivalent to either tg ort.

Parametricity: The Idea

PRrRoPOSITION (UNARY)

Forany closed termid : VX.X — X, forany type T and any property P of the type T, if P holds of t : T, then P holds
ofid[T]t:T.

PROPOSITION (BINARY)

Forany closed termid : VX.X — X, forany types T, T’ and any binary relation R between T and T’, if R relates
t:Ttot’: T/ thenRrelatesid [T]t: Ttoid [T/1t’: T'.

Example (A Free Theorem fromid : VX. X — X)

Letg: T — T’ beanarbitrary function. Forany t : T, it holds thatid [T’] (g t) is equivalent to g (id [T] t).

Impredicativity

Remark (Russell’s Paradox)

Let R be the set of sets that are not a member of themselves, i.e.,

def

R={x[x¢&x},
thenwe canseethatR € R <= R ¢ R, whichyields a paradox.

The paradox comes of letting the x be the very “set” R that is being defined by the membership condition.
Intuitively, impredicativity means self-referencing definitions.

System Fis Impredicative

The type variable X in the type T = VYX.X — Xranges over all types, including T itself.
Fortunately, Girard shows that System F is logically consistent.

Type Reconstruction

Erasure & Type Reconstruction

erase(x) ey
erase(Ax:T1.t2) LMx. erase(t,)
erase(tq ty) défemse(t]) erase(t,)
erase(AX. tz)dg erase(ty)

erase(ty [T3])d:Ef erase(ty)

Given an untyped term m, whether we can find some well-typed term t such that erase(t) = m.

THEOREM (WELLS, 19943)

Type reconstruction for System Fis undecidable.

3. B. Wells. 1994. Typability and Type Checking in the Second-Order A-Calculus Are Equivalent and Undecidable. In Logic in Computer Science (LICS'94),176-185. DOI: 10.1109/LICS 1994.316068.

https://doi.org/10.1109/LICS.1994.316068

Partial Erasure & Type Reconstruction

erasep(x) ey
erasep(Ax:Ty. t2) &f Ax:Ty. erasep(t2)
erasey(AX. t2) LIAX. erasep(t2)

erase,,(h [T2]) d:eferase,g(t])[1

THEOREM (BOEHM 1985%,1989°)

Itis undecidable whether, given a closed term s in which type applications are marked but the arguments are
omitted, there is some well-typed System-F term t such thaterase, (t) = s.

Is this the end of the story?

4H.-). Boehm. 1985. Partial Polymorphic Type Inference is Undecidable. In Sym,

e (SFCS'85), 339-345. DOI: 10.1109/SFCS.1985.44.

5H.-). Boehm. 1989. Type Inference in the Presence of Type Abstraction. In Prog (PLDI'89),192—206. DOI: 10.1145/73141.74835.

https://doi.org/10.1109/SFCS.1985.44
https://doi.org/10.1145/73141.74835

Fragments of System F

Prenex Polymorphism

e Typevariables range only over quantifier-free types (monotypes).

® Quantified types (polytypes) are not allows to appear on the left-hand sides of arrows.

Rank-2 Polymorphism

Atype is said to be of rank 2 if no path from its root to a V quantifier passes to the left of 2 or more arrows.

(VX.X — X) — Nat e
Nat — ((VX.X = X) — (Nat — Nat)) v
((VX.X — X) — Nat) — Nat X

Remark

Prenex polymorphism is a predicative and rank-1 fragment of System F.
Type reconstruction for ranks 2 and lower is decidable!

Homework

Do one of them!

Ifr-t:Tandt — t/,thenT Ft/: T.

Iftisaclosed, well-typed term, then either t is a value or else there is some t’/ witht — t’.

