

编程语言的设计原理 Design Principles of Programming Languages

Haiyan Zhao, Di Wang 赵海燕,王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 202;

Chap 24: Existential Types

Existential Types Data Abstraction Encodings in System F

Review: System F

Syntax

$$\begin{split} t &\coloneqq \dots \mid \lambda X. \ t \mid t \ [T] \\ T &\coloneqq X \mid T \to T \mid \forall X.T \end{split}$$

 $\nu := \dots | \lambda X. t$ $\Gamma := \emptyset | \Gamma, x : T | \Gamma, X$

Evaluation

$$\frac{t_1 \longrightarrow t_1'}{t_1 \, [T_2] \longrightarrow t_1' \, [T_2]} \xrightarrow{\text{E-TAPP}} \frac{(\lambda X. \, t_{12}) \, [T_2] \longrightarrow [X \mapsto T_2] t_{12}}{(\lambda X. \, t_{12}) \, [T_2] \longrightarrow [X \mapsto T_2] t_{12}} \xrightarrow{\text{E-TAPPTABS}}$$

Typing

$$\frac{\Gamma, X \vdash t_2: \mathsf{T}_2}{\Gamma \vdash \lambda X. \, t_2: \forall X. \mathsf{T}_2} \; \texttt{T-TABS}$$

$$\frac{\Gamma \vdash t_1 : \forall X.T_{12}}{\Gamma \vdash t_1 [T_2] : [X \mapsto T_2]T_{12}} \text{ T-TAPP}$$

Two Views of a Universal Type $\forall X.T$

Logical Intuition

- An element of $\forall X.T$ is a value of type $[X \mapsto S]T$ for all choices of S.
- The identify function λX . λx : X. x erases to λx . x, mapping a value of any type S to a value of the same type.

Operational Intuition

- An element of $\forall X.T$ is a **function** mapping **any** type S to a specialized term with type $[X \mapsto S]T$.
- In the (E-TAPPTABS) rule, the reduction of a type application is an actual computation step.

Question

We have already seen universal quantifiers \forall . What about existential quantifiers \exists ?

Two Views of an Existential Type $\exists X.T$

Logical Intuition

An element of $\exists X.T$ is a value of type $[X \mapsto S]T$ for some type S.

Operational Intuition

An element of $\exists X.T$ is a **pair** of **some** type S and a term of type $[X \mapsto S]T$.

Remark

We will focus on the operational view of existential types. The essence of existential types is that they **hide information** about the packaged type.

Notations

We write $\{\exists X, T\}$ (instead of $\exists X.T$) to emphasize the operational view. The pair of type $\{\exists X, T\}$ is written $\{*S, t\}$ of a type S and a term t of type $[X \mapsto S]T$.

A Simple Example

Example

The pair

$$p = \{*Nat, \{a=5, f=\lambda x: Nat. succ(x)\}\}$$
$$a \cdot x f \cdot x \rightarrow x\}$$

has the existential type $\{\exists X, \{a : X, f : X \rightarrow X\}\}$.

- The type component of p is Nat.
- The value component is a record containing of field a of type X and a field f of type $X \to X$, for some X.

Example

The same pair p also has the type $\{\exists X, \{a : X, f : X \rightarrow Nat\}\}$. In general, the typechecker cannot decide how much information should be hidden.

p = {*Nat, {a=5, f=
$$\lambda$$
 x:Nat. succ(x)}} as {∃X, {a:X, f:X→X}};
▶ p : {∃X, {a:X, f:X→X}}
p1 = {*Nat, {a=5, f= λ x:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}}
▶ p1 : {∃X, {a:X, f:X→Nat}}

$$\{ *Nat, \{a=5, f=\lambda x:Nat. succ(x) \} \} as \{ \exists X, \{a:X, a:X, \{a:X, f:X \rightarrow X \} \}$$

=
$$\{ *Nat, \{a=5, f=\lambda x:Nat. succ(x) \} \} as \{ \exists X, \{a:X, \{a:X,$$

Introduction Rule for $\{\exists X, T\}$

Typing

 $\frac{\Gamma \vdash t_2 : [X \mapsto U] T_2}{\Gamma \vdash \{*U, t_2\} \text{ as } \{\exists X, T_2\} : \{\exists X, T_2\}} \text{ T-Pack}$

Example

Pairs with different hidden representation types can inhabit the same existential type.

```
p4 = {*Nat, {a=0, f=\u03cb x:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}};

▶ p4 : {∃X, {a:X, f:X→Nat}}

p5 = {*Bool, {a=ture, f=\u03cb x:Bool. if x then 1 else 0}} as {∃X, {a:X, f:X→Nat}};

▶ p5 : {∃X, {a:X, f:X→Nat}}
```

Elimination Rule for $\{\exists X, T\}$

Typing

$$\label{eq:generalized_states} \begin{split} \frac{\Gamma \vdash t_1: \left\{ \exists X, T_{12} \right\} \qquad \Gamma, X, x: T_{12} \vdash t_2: T_2}{\Gamma \vdash \mathsf{let}\left\{ X, x \right\} = t_1 \ \mathsf{in} \ t_2: T_2} \ \mathsf{T-Unpack} \end{split}$$

Example

```
p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}};

▶ p4 : {∃X, {a:X, f:X→Nat}}

let {X,x}=p4 in (x.f x.a);

▶ 1 : Nat

let {X,x}=p4 in (λy:X. x.f y) x.a;
```

Subtlety of the Elimination Rule

Example

```
p4 = {*Nat, {a=0, f=λx:Nat. succ(x)}} as {∃X, {a:X, f:X→Nat}};

▶ p4 : {∃X, {a:X, f:X→Nat}}

let {X,x}=p4 in succ(x.a);

▶ Error: argument of succ is not a number

let {X,x}=p4 in x.a;

▶ Error: scoping error!
```

Aside

A simple solution for the scoping problem is to add a well-formedness check as a premise:

$$\frac{\Gamma \vdash t_1 : \{\exists X, T_{12}\} \quad \Gamma, X, x : T_{12} \vdash t_2 : T_2 \quad \Gamma \vdash T_2 \text{ type}}{\Gamma \vdash \text{let} \{X, x\} = t_1 \text{ in } t_2 : T_2} \text{ T-UNPACK}$$

Existential Types: Syntax and Evaluation

Syntax

$$\begin{split} t &\coloneqq \dots \mid \{^*T, t\} \text{ as } T \mid \text{let} \{X, x\} = t \text{ in } t \\ \nu &\coloneqq \dots \mid \{^*T, \nu\} \text{ as } T \\ T &\coloneqq \dots \mid \{\exists X, T\} \end{split}$$

Evaluation

$$\begin{split} \overline{\text{let}\left\{X,x\right\}} &= \left(\left\{{}^{*}\text{T}_{11},\nu_{12}\right\}\text{as}\text{T}_{1}\right)\text{in}\text{t}_{2}\longrightarrow\left[X\mapsto\text{T}_{11}\right]\left[x\mapsto\nu_{12}\right]\text{t}_{2}} \\ & \frac{t_{12}\longrightarrow t_{12}'}{\left\{{}^{*}\text{T}_{11},t_{12}\right\}\text{as}\text{T}_{1}\longrightarrow\left\{{}^{*}\text{T}_{11},t_{12}'\right\}\text{as}\text{T}_{1}} \\ & \frac{t_{1}\longrightarrow t_{1}'}{\left[{}^{*}\text{t}_{11},t_{12}\right]\text{as}\text{T}_{1}\longrightarrow\left\{{}^{*}\text{T}_{11},t_{12}'\right]\text{as}\text{T}_{1}} \\ & \frac{t_{1}\longrightarrow t_{1}'}{\left[{}^{*}\text{t}_{1}\times\left\{X,x\right\}=t_{1}\text{in}\text{t}_{2}\longrightarrow\left[{}^{*}\text{LUNPACK}\right]\right]} \\ E\text{-UNPACK} \end{split}$$

Data Abstraction

Design Principles of Programming Languages, Spring 202;

11

Abstract Data Types (ADTs)

Definition

An abstract data type (ADT) consists of

- a type name A,
- a concrete representation type T,
- $\bullet~$ implementations of some operations for creating, querying, and manipulating values of type T, and
- an abstraction boundary enclosing the representation and operations.

ADT count	e	r =
type Counter		
representation Nat		
signature		
new	:	Counter,
get	:	Counter→Nat,
inc	:	Counter→Counter;

operations

```
new = 1,
get = λi:Nat. i,
inc = λi:Nat. succ(i);
```

Translating ADTs to Existentials


```
counterADT =
   {*Nat.
     {new = 1.
      qet = \lambda i:Nat. i,
      inc = \lambda i:Nat. succ(i)}
 as {∃Counter,
     {new: Counter.
      get: Counter\rightarrowNat,
      inc: Counter→Counter}}:
► counterADT : {∃Counter.
                    {new:Counter.get:Counter → Nat, inc:Counter → Counter}}
```

let {Counter,counter} = counterADT in counter.get (counter.inc counter.new); > 2 : Nat

ADTs and Modules / Packages

Observation

An element of an existential type can be seen as a **module** or a **package**, in the following sense:

let {Counter,counter} = <counter module / counter package> in
<rest of program that uses the module / package>

```
let {Counter.counter} = counterADT in
let {FlipFlop,flipflop} =
     {*Counter.
      {new = counter.new,
       read = \lambda c:Counter. iseven (counter.get c),
       togale = \lambda c:Counter. counter.inc c,
       reset = \lambda c:Counter. counter.new}
  as {∃FlipFlop.
       {new: FlipFlop, read: FlipFlop→Bool,
        toggle: FlipFlop→FlipFlop, reset: FlipFlop→FlipFlop} in
flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));
  false · Bool
```

Representation Independence

Observation

We can substitute an alternative implementation of the Counter ADT and the program will remain typesafe.

```
counterADT =
   {*{x:Nat}.
    \{new = \{x=1\}.
     aet = \lambda i: \{x: Nat\}, i.x.
     inc = \lambda i:{x:Nat}. {x=succ(i.x)}}
as {∃Counter.
     {new: Counter. get:Counter→Nat. inc:Counter→Counter}}:
► counterADT : {∃Counter.
                   {new:Counter,get:Counter → Nat,inc:Counter → Counter}}
let {Counter, counter} = counterADT in
```

```
let {FlipFlop,flipflop} = ...
```

Existential Objects

Idea

We choose a **purely functional** style, i.e., when we need to change the object's internal state, we instead build a fresh object.

A counter object consists of (i) a number (its internal state) and (ii) a pair of methods (its external interface): Counter = {∃X, {state:X, methods: {get:X→Nat, inc:X→X}}}; c = {*Nat, {state = 5, methods = {get = λx:Nat. x, inc = λx:Nat. succ(x)}} as Counter; ► c : Counter

Existential Objects


```
let {X,body} = c in body.methods.get(body.state);
5 : Nat
```

```
sendget = λc:Counter.
    let {X,body} = c in
    body.methods.get(body.state);

sendget : Counter → Nat
```

```
let {X,body} = c in body.methods.inc(body.state);
► Error: scoping error!
```

```
sendinc = λc:Counter.
    let {X,body} = c in
        {*X,
        {state = body.methods.inc(body.state),
        methods = body.methods}}
    as Counter;
```


ADTs

CounterADT = {∃Counter, {new:Counter,get:Counter→Nat,inc:Counter→Counter}} "The abstract type of counters" refers to the (hidden) type Nat, i.e., simple numbers. ADTs are usually used in a **pack-and-then-open** manner, leading to a **unique** internal representation type.

Objects

"The abstract type of counters" refers to the whole package, including the number and the implementations. Objects are kept closed as long as possible and each object carries its <mark>own</mark> representation type.

Observation

The object style is convenient in the presence of **subtyping** and **inheritance**.

Question

What about implementing binary operations on the same abstract type?

Let us consider a simple case: we want to implement an equality operation for counters.

ADT Style

```
let {Counter,counter} = counterADT in
let counter_eq = λ c1:Counter. λ c2.Counter. nat_eq (counter.get c1) (counter.get c2)
in <rest of program>
```

Object Style

```
let counter_eq = \lambda c1:Counter. \lambda c2:Counter.
let {X1,body1} = c1 in
let {X2,body2} = c2 in
nat_eq body1.methods.get(body1.state) body2.methods.get(body2.state);
```


Remark

The equality operation can be implemented outside the abstraction boundary.

Let us consider implementing an abstraction for sets of numbers. The concrete representation is labeled trees and is **not** exposed to the outside. We'd implement a union operation that needs to view the **concrete representation of both** arguments.

ADT Style

NatSetADT = {∃NatSet, {..., union:NatSet→NatSet→NatSet}}

Object Style

$$\label{eq:NatSet} \begin{split} & \mathsf{NatSet} = \{ \exists X, \{ \mathsf{state:} X, \mathsf{methods:} \{ \ldots, \mathsf{union:} X \rightarrow \mathsf{NatSet} \rightarrow X \} \} \} \\ & \mathsf{Problems:} (i) we need recursive types, and (ii) union cannot access the concrete structure of its 2nd argument. \end{split}$$

Question (Exercise 24.2.5)

Why can't we use the type

```
NatSet = {\exists X, \{ state: X, methods: \{ ..., union: X \rightarrow X \rightarrow X \} \}}
```

instead?

Answer

We cannot send a union message to a NatSet object, with another NatSet object as an argument of the message:

```
sendunion = λ s1:NatSet. λ s2:NatSet.
    let {X1, body1} = s1 in
    let {X2, body2} = s2 in
        ... body1.methods.union body1.state body2.state ...
Another explanation: chiests allow different internal representations thus upion: X = X is an
        Another explanation.
```

Another explanation: objects allow different internal representations, thus union: $X \rightarrow X \rightarrow X$ is not safe.

Question

In C++, Java, etc., it's not difficult to implement such a union operation. How does that work?

Design Principles of Programming Languages, Spring 2023

Encodings in System F

Design Principles of Programming Languages, Spring 2023

Review: Encoding Pairs in System F

PRINCIPLE

Encode typing rules for **destructors** as polymorphic function types.

Elimination Rules for Pairs

$$\begin{array}{l} \frac{\Gamma \vdash t_1:T_{11} \times T_{12}}{\Gamma \vdash t_1.1:T_{11}} & \text{T-Proj:} \\ \\ \frac{\Gamma \vdash t_1.1:T_{11} \times T_{12}}{\Gamma \vdash t_1.2:T_{12}} & \Gamma, x:T_{11}, y:T_{12} \vdash t_2:S \\ \\ \frac{\Gamma \vdash t_1:T_{11} \times T_{12}}{\Gamma \vdash \text{let}\{x,y\} = t_1 \text{ in } t_2:S} & \text{T-LetPAIR} \end{array}$$

Pair T1 T2 = $\forall \, X.$ (T1 $\!\!\!\!\rightarrow T2 \!\!\!\rightarrow X)$ \rightarrow X

Encoding Existentials in System F

The Elimination Rule for Existentials

$$\frac{\Gamma \vdash t_1 : \{\exists X, T\} \qquad \Gamma, X, x : T \vdash t_2 : S}{\Gamma \vdash let \{X, x\} = t_1 \text{ in } t_2 : S} \text{ T-UNPACK}$$

$$\{\exists X,T\} \stackrel{\text{def}}{=} \forall Y. (\forall X. T \rightarrow Y) \rightarrow Y$$

{*S,t} as {
$$\exists X,T$$
} $\stackrel{\text{def}}{=} \lambda Y$. $\lambda f: (\forall X. T \rightarrow Y)$. f [S] t
let { X,x } = t1 in t2 $\stackrel{\text{def}}{=}$ t1 [S] (λX . $\lambda x:T$. t2)

Question

Show that under the encodings of existentials in System F, we have the following evaluation relation: $let \{X, x\} = (\{{}^*T_{11}, \nu_{12}\} \text{ as } T_1) \text{ in } t_2 \longrightarrow^* [X \mapsto T_{11}][x \mapsto \nu_{12}]t_2$