
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang
赵海燕，王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 2023 1

Chap 24: Existential Types

Existential Types
Data Abstraction

Encodings in System F

Design Principles of Programming Languages, Spring 2023 2

Review: System F
Syntax

t ::= . . . | λX. t | t [T] v ::= . . . | λX. t
T ::= X | T → T | ∀X.T Γ ::= ∅ | Γ , x : T | Γ ,X

Evaluation

t1 −→ t ′1
t1 [T2] −→ t ′1 [T2]

E-TAPP
(λX. t12) [T2] −→ [X 7→ T2]t12

E-TAPPTABS

Typing

Γ ,X ` t2 : T2

Γ ` λX. t2 : ∀X.T2
T-TABS

Γ ` t1 : ∀X.T12
Γ ` t1 [T2] : [X 7→ T2]T12

T-TAPP

Design Principles of Programming Languages, Spring 2023 3

Two Views of a Universal Type∀X.T

Logical Intuition

• An element of ∀X.T is a value of type [X 7→ S]T for all choices of S.
• The identify function λX. λx:X. x erases to λx. x, mapping a value of any type S to a value of the same type.

Operational Intuition

• An element of ∀X.T is a function mapping any type S to a specialized term with type [X 7→ S]T .
• In the (E-TAPPTABS) rule, the reduction of a type application is an actual computation step.

Question
We have already seen universal quantifiers ∀. What about existential quantifiers ∃?

Design Principles of Programming Languages, Spring 2023 4

Two Views of an Existential Type∃X.T
Logical Intuition
An element of ∃X.T is a value of type [X 7→ S]T for some type S.

Operational Intuition
An element of ∃X.T is a pair of some type S and a term of type [X 7→ S]T .

Remark
We will focus on the operational view of existential types.
The essence of existential types is that they hide information about the packaged type.

Notations
We write {∃X, T} (instead of ∃X.T) to emphasize the operational view.
The pair of type {∃X, T} is written {*S, t} of a type S and a term t of type [X 7→ S]T .
Design Principles of Programming Languages, Spring 2023 5

A Simple Example
Example
The pair

p = {*Nat, {a=5, f=λ x:Nat. succ(x)}}
has the existential type {∃X, {a : X, f : X → X}}.

• The type component of p is Nat.
• The value component is a record containing of field a of type X and a field f of type X → X, for someX.

Example
The same pair p also has the type {∃X, {a : X, f : X → Nat}}.
In general, the typechecker cannot decide how much information should be hidden.
p = {*Nat, {a=5, f=λ x:Nat. succ(x)}} as {∃ X, {a:X, f:X→X}};
▶ p : {∃ X, {a:X, f:X→X}}
p1 = {*Nat, {a=5, f=λ x:Nat. succ(x)}} as {∃ X, {a:X, f:X→Nat}};
▶ p1 : {∃ X, {a:X, f:X→Nat}}

Design Principles of Programming Languages, Spring 2023 6

Introduction Rule for {∃X, T}

Typing

Γ ` t2 : [X 7→ U]T2

Γ ` {*U, t2} as {∃X, T2} : {∃X, T2}
T-PACK

Example
Pairs with different hidden representation types can inhabit the same existential type.
p4 = {*Nat, {a=0, f=λ x:Nat. succ(x)}} as {∃ X, {a:X, f:X→Nat}};
▶ p4 : {∃ X, {a:X, f:X→Nat}}
p5 = {*Bool, {a=ture, f=λ x:Bool. if x then 1 else 0}} as {∃ X, {a:X, f:X→Nat}};
▶ p5 : {∃ X, {a:X, f:X→Nat}}

Design Principles of Programming Languages, Spring 2023 7

Elimination Rule for {∃X, T}
Typing

Γ ` t1 : {∃X, T12} Γ ,X, x : T12 ` t2 : T2

Γ ` let {X, x} = t1 in t2 : T2
T-UNPACK

Example
p4 = {*Nat, {a=0, f=λ x:Nat. succ(x)}} as {∃ X, {a:X, f:X→Nat}};
▶ p4 : {∃ X, {a:X, f:X→Nat}}

let {X,x}=p4 in (x.f x.a);
▶ 1 : Nat
let {X,x}=p4 in (λ y:X. x.f y) x.a;
▶ 1 : Nat

Design Principles of Programming Languages, Spring 2023 8

Subtlety of the Elimination Rule
Example
p4 = {*Nat, {a=0, f=λ x:Nat. succ(x)}} as {∃ X, {a:X, f:X→Nat}};
▶ p4 : {∃ X, {a:X, f:X→Nat}}

let {X,x}=p4 in succ(x.a);
▶ Error: argument of succ is not a number

let {X,x}=p4 in x.a;
▶ Error: scoping error!

Aside
A simple solution for the scoping problem is to add a well-formedness check as a premise:

Γ ` t1 : {∃X, T12} Γ ,X, x : T12 ` t2 : T2 Γ ` T2 type
Γ ` let {X, x} = t1 in t2 : T2

T-UNPACK

Design Principles of Programming Languages, Spring 2023 9

Existential Types: Syntax and Evaluation
Syntax

t ::= . . . | {*T , t} as T | let {X, x} = t in t
v ::= . . . | {*T , v} as T
T ::= . . . | {∃X, T}

Evaluation

let {X, x} = ({*T11, v12} as T1) in t2 −→ [X 7→ T11][x 7→ v12]t2
E-UNPACKPACK

t12 −→ t ′12
{*T11, t12} as T1 −→ {*T11, t ′12} as T1

E-PACK

t1 −→ t ′1
let {X, x} = t1 in t2 −→ let {X, x} = t ′1 in t2

E-UNPACK

Design Principles of Programming Languages, Spring 2023 10

Data Abstraction

Design Principles of Programming Languages, Spring 2023 11

Abstract Data Types (ADTs)

Definition
An abstract data type (ADT) consists of

• a type name A,
• a concrete representation type T,
• implementations of some operations for creating, querying, and manipulating values of type T, and
• an abstraction boundary enclosing the representation and operations.

ADT counter =
type Counter
representation Nat
signature

new : Counter,
get : Counter→Nat,
inc : Counter→Counter;

operations
new = 1,
get = λ i:Nat. i,
inc = λ i:Nat. succ(i);

Design Principles of Programming Languages, Spring 2023 12

Translating ADTs to Existentials

counterADT =
{*Nat,

{new = 1,
get = λ i:Nat. i,
inc = λ i:Nat. succ(i)}}

as {∃ Counter,
{new: Counter,
get: Counter→Nat,
inc: Counter→Counter}};

▶ counterADT : {∃ Counter,
{new:Counter,get:Counter→Nat,inc:Counter→Counter}}

let {Counter,counter} = counterADT in
counter.get (counter.inc counter.new);
▶ 2 : Nat

Design Principles of Programming Languages, Spring 2023 13

ADTs and Modules / Packages
Observation
An element of an existential type can be seen as a module or a package, in the following sense:

let {Counter,counter} = <counter module / counter package> in
<rest of program that uses the module / package>

let {Counter,counter} = counterADT in
let {FlipFlop,flipflop} =

{*Counter,
{new = counter.new,
read = λ c:Counter. iseven (counter.get c),
toggle = λ c:Counter. counter.inc c,
reset = λ c:Counter. counter.new}}

as {∃ FlipFlop,
{new: FlipFlop, read: FlipFlop→Bool,
toggle: FlipFlop→FlipFlop, reset: FlipFlop→FlipFlop}} in

flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));
▶ false : Bool

Design Principles of Programming Languages, Spring 2023 14

Representation Independence

Observation
We can substitute an alternative implementation of the CounterADT and the program will remain typesafe.

counterADT =
{*{x:Nat},
{new = {x=1},
get = λ i:{x:Nat}. i.x,
inc = λ i:{x:Nat}. {x=succ(i.x)}}}

as {∃ Counter,
{new: Counter, get:Counter→Nat, inc:Counter→Counter}};

▶ counterADT : {∃ Counter,
{new:Counter,get:Counter→Nat,inc:Counter→Counter}}

let {Counter,counter} = counterADT in
let {FlipFlop,flipflop} = ...

Design Principles of Programming Languages, Spring 2023 15

Existential Objects

Idea
We choose a purely functional style, i.e., when we need to change the object’s internal state, we instead build a
fresh object.

A counter object consists of (i) a number (its internal state) and (ii) a pair of methods (its external interface):
Counter = {∃ X, {state:X, methods: {get:X→Nat, inc:X→X}}};

c = {*Nat,
{state = 5,
methods = {get = λ x:Nat. x,

inc = λ x:Nat. succ(x)}}}
as Counter;

▶ c : Counter

Design Principles of Programming Languages, Spring 2023 16

Existential Objects
let {X,body} = c in body.methods.get(body.state);
▶ 5 : Nat

sendget = λ c:Counter.
let {X,body} = c in
body.methods.get(body.state);

▶ sendget : Counter → Nat

let {X,body} = c in body.methods.inc(body.state);
▶ Error: scoping error!

sendinc = λ c:Counter.
let {X,body} = c in
{*X,
{state = body.methods.inc(body.state),
methods = body.methods}}

as Counter;
▶ sendinc : Counter → Counter

Design Principles of Programming Languages, Spring 2023 17

ADTs vs. Objects

ADTs
CounterADT = {∃ Counter, {new:Counter,get:Counter→Nat,inc:Counter→Counter}}

“The abstract type of counters” refers to the (hidden) type Nat, i.e., simple numbers.
ADTs are usually used in a pack-and-then-open manner, leading to a unique internal representation type.

Objects

Counter = {∃ X, {state:X, methods:{get:X→Nat,inc:X→X}}}
“The abstract type of counters” refers to the whole package, including the number and the implementations.
Objects are kept closed as long as possible and each object carries its own representation type.

Observation
The object style is convenient in the presence of subtyping and inheritance.

Design Principles of Programming Languages, Spring 2023 18

ADTs vs. Objects
Question
What about implementing binary operations on the same abstract type?

Let us consider a simple case: we want to implement an equality operation for counters.

ADT Style
let {Counter,counter} = counterADT in
let counter_eq = λ c1:Counter. λ c2.Counter. nat_eq (counter.get c1) (counter.get c2)
in <rest of program>

Object Style
let counter_eq = λ c1:Counter. λ c2:Counter.

let {X1,body1} = c1 in
let {X2,body2} = c2 in
nat_eq body1.methods.get(body1.state) body2.methods.get(body2.state);

Design Principles of Programming Languages, Spring 2023 19

ADTs vs. Objects

Remark
The equality operation can be implemented outside the abstraction boundary.

Let us consider implementing an abstraction for sets of numbers.
The concrete representation is labeled trees and is not exposed to the outside.
We’d implement a union operation that needs to view the concrete representation of both arguments.

ADT Style

NatSetADT = {∃ NatSet, {..., union:NatSet→NatSet→NatSet}}

Object Style

NatSet = {∃ X, {state:X, methods:{..., union:X→NatSet→X}}}
Problems: (i) we need recursive types, and (ii) union cannot access the concrete structure of its 2nd argument.

Design Principles of Programming Languages, Spring 2023 20

ADTs vs. Objects
Question (Exercise 24.2.5)
Why can’t we use the type

NatSet = {∃ X, {state:X, methods:{..., union:X→X→X}}}
instead?

Answer
We cannot send a unionmessage to a NatSet object, with another NatSet object as an argument of the message:
sendunion = λ s1:NatSet. λ s2:NatSet.

let {X1,body1} = s1 in
let {X2,body2} = s2 in
... body1.methods.union body1.state body2.state ...

Another explanation: objects allow different internal representations, thus union:X→X→ X is not safe.

Question
In C++, Java, etc., it’s not difficult to implement such a union operation. How does that work?
Design Principles of Programming Languages, Spring 2023 21

Encodings in System F

Design Principles of Programming Languages, Spring 2023 22

Review: Encoding Pairs in System F

PRINCIPLE
Encode typing rules for destructors as polymorphic function types.

Elimination Rules for Pairs

Γ ` t1 : T11 × T12

Γ ` t1.1 : T11
T-PROJ1

Γ ` t1 : T11 × T12

Γ ` t1.2 : T12
T-PROJ2

Γ ` t1 : T11 × T12 Γ , x : T11,y : T12 ` t2 : S

Γ ` let {x,y} = t1 in t2 : S
T-LETPAIR

Pair T1 T2 = ∀ X. (T1→T2→X) → X
Design Principles of Programming Languages, Spring 2023 23

Encoding Existentials in System F

The Elimination Rule for Existentials

Γ ` t1 : {∃X, T} Γ ,X, x : T ` t2 : S

Γ ` let {X, x} = t1 in t2 : S
T-UNPACK

{∃ X,T} def
= ∀ Y. (∀ X. T → Y) → Y

{*S,t} as {∃ X,T} def
= λ Y. λ f:(∀ X. T → Y). f [S] t

let {X,x} = t1 in t2 def
= t1 [S] (λ X. λ x:T. t2)

Design Principles of Programming Languages, Spring 2023 24

Homework

Question
Show that under the encodings of existentials in System F, we have the following evaluation relation:

let {X, x} = ({*T11, v12} as T1) in t2 −→∗ [X 7→ T11][x 7→ v12]t2

Design Principles of Programming Languages, Spring 2023 25

