

# 编程语言的设计原理 Design Principles of Programming Languages

Haiyan Zhao, Di Wang 赵海燕,王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 202;



## Chap 29: Type Operators and Kinding

Type-Level Functions Kinding  $\lambda_{\omega}$  The Essence of  $\lambda$ 

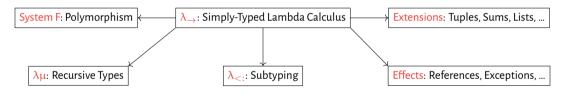
## We Have Studied ...



#### PRINCIPLE

The uses of type systems go far beyond their role in detecting errors.

- Type systems offer crucial support for programming: abstraction, safety, efficiency, ...
- Language design shall go hand-in-hand with type-system design.



#### Remark

- Different combinations of features lead to different languages.
- Some combinations turn out to be very tricky!

## The Essence of $\lambda$



#### PRINCIPLE

- Types characterize terms.
- Building abstractions:
  - In  $\lambda_{\rightarrow}$ , we use  $\lambda x$ :T. t to abstract terms out of terms.
  - In System F, we use  $\lambda X$ . t to abstract terms out of types.

#### Question

- Is it possible to further characterize types?
- Are these combinations meaningful?
  - Abstract **types** out of **types**? "λX. T"?
  - Abstract types out of terms? "λx:T. T"?

## **Characterization of Types**



CBool = 
$$\forall X. X \rightarrow X \rightarrow X;$$
  
Pair Y Z =  $\forall X. (Y \rightarrow Z \rightarrow X) \rightarrow X;$ 

Abbreviation **Parametric** Abbreviation

#### **Observation**

- Pair is like a type-level function.
- Similar notions include Array T and Ref T.

#### Abstract Types out of Types!

#### Pair = $\lambda Y$ . $\lambda Z$ . $\forall X$ . $(Y \rightarrow Z \rightarrow X) \rightarrow X$

## **Type-Level Computation**



#### **Observation**

Introducing abstraction and application at the type level allows writing the same type in different ways.

| Example                                                                   |                                                                                             |                                             |
|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------|
| Then, the following types are all eques $Nat 	o Bool$<br>Id Nat $	o Bool$ | Id = $\lambda$ X. X<br>uvalent:<br>Nat $\rightarrow$ Id Bool<br>Id (Nat $\rightarrow$ Bool) | Id Nat → Id Bool<br>Id (Id (Id Nat → Bool)) |

#### **PROPOSITION**

Let us denote the type-level reduction by  $\Rightarrow$ . Then two types S and T are equivalent iff there exists some U such that S  $\Rightarrow^*$  U and T  $\Rightarrow^*$  U.



# Kinding

Design Principles of Programming Languages, Spring 202

7

## **Kinds**



#### Observation

Type-level computation brings the issue of writing meaningless type expressions.

(Bool Nat) (Pair Bool Bool Nat) (Pair Pair)

#### Kinds: "The Types of Types"

#### Kinds characterize types, in the same sense as types characterize terms.

| *                                 | the kind of proper types (like Bool and Bool $\rightarrow$ Bool)                         |
|-----------------------------------|------------------------------------------------------------------------------------------|
| $* \Rightarrow *$                 | the kind of type operators (i.e., functions from proper types to proper types)           |
| $* \Rightarrow * \Rightarrow *$   | the kind of functions from proper types to type operators (i.e., two-argument operators) |
| $(* \Rightarrow *) \Rightarrow *$ | the kind of functions from type operators to proper types                                |

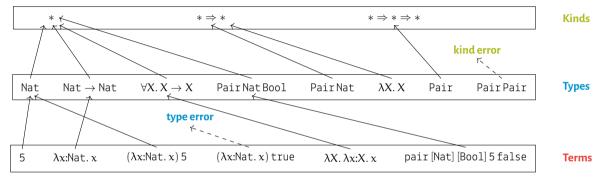
#### Type-Level Functions ( $\lambda X$ ::K. T)

#### $\mathsf{Pair} = \lambda Y :: ^{\star}. \ \lambda Z :: ^{\star}. \ \forall X. \ (Y \rightarrow Z \rightarrow X) \ \rightarrow \ X$

Design Principles of Programming Languages, Spring 2023

## Terms, Types, and Kinds





#### Question

- What is the difference between  $\forall X. X \rightarrow X \text{ and } \lambda X. X \rightarrow X$ ?
- Why doesn't an arrow type  $\texttt{Nat} \to \texttt{Nat}$  have an arrow kind like  $* \Rightarrow *?$



# $\lambda_{\omega}$

#### $\lambda_{\rightarrow}$ with Type-Level Functions and Kinding

Design Principles of Programming Languages, Spring 202;

### **Syntax**



| t | ::= |                   | terms:                |
|---|-----|-------------------|-----------------------|
|   |     | x                 | variable              |
|   |     | λx:T. t           | abstraction           |
|   |     | tt                | application           |
| ν | ::= |                   | values:               |
|   |     | λx:T. t           | abstraction value     |
| Т | ::= |                   | types:                |
|   |     | Х                 | type variable         |
|   |     | λΧ::Κ. Τ          | operator abstraction  |
|   |     | ТТ                | operator application  |
|   |     | $T\toT$           | type of functions     |
| Г | ::= |                   | contexts:             |
|   |     | Ø                 | empty context         |
|   |     | Г, х : Т          | term variable binding |
|   |     | Г, Х :: К         | type variable binding |
| K | ::= |                   | kinds:                |
|   |     | *                 | kind of proper types  |
|   |     | $K \Rightarrow K$ | kind of operators     |

## **Evaluation and Typing**



#### Evaluation

$$\frac{t_1 \longrightarrow t_1'}{t_1 t_2 \longrightarrow t_1' t_2} \text{ E-App1} \qquad \frac{t_2 \longrightarrow t_2'}{\nu_1 t_2 \longrightarrow \nu_1 t_2'} \text{ E-App2} \qquad \frac{(\lambda x: T_{11}. t_{12}) \nu_2 \longrightarrow [x \mapsto \nu_2] t_{12}}{(\lambda x: T_{11}. t_{12}) \nu_2 \longrightarrow [x \mapsto \nu_2] t_{12}} \text{ E-AppAbs}$$

# Typing $\frac{x:T \in \Gamma}{\Gamma \vdash x:T} \text{ T-VAR}$ $\frac{\Gamma \vdash T_1 :: * \quad \Gamma, x:T_1 \vdash t_2:T_2}{\Gamma \vdash \lambda x:T_1 \cdot t_2:T_1 \rightarrow T_2} \text{ T-ABS}$ $\frac{\Gamma \vdash t_1:T_{11} \rightarrow T_{12} \quad \Gamma \vdash t_2:T_{11}}{\Gamma \vdash t_1:t_2:T_{12}} \text{ T-APP}$ $\frac{\Gamma \vdash t:S \quad S \equiv T \quad \Gamma \vdash T :: *}{\Gamma \vdash t:T} \text{ T-EQ}$

## Kinding



#### $\Gamma \vdash T$ :: K: "type T has kind K in context $\Gamma$ "

$$\frac{X :: K \in \Gamma}{\Gamma \vdash X :: K} \text{ K-TVAR} \qquad \frac{\Gamma, X :: K_1 \vdash T_2 :: K_2}{\Gamma \vdash \lambda X :: K_1 . T_2 :: K_1 \Rightarrow K_2} \text{ K-Abs}$$

$$\frac{\Gamma \vdash T_1 :: K_{11} \Rightarrow K_{12} \qquad \Gamma \vdash T_2 :: K_{11}}{\Gamma \vdash T_1 T_2 :: K_{12}} \text{ K-App} \qquad \frac{\Gamma \vdash T_1 :: * \qquad \Gamma \vdash T_2 :: *}{\Gamma \vdash T_1 \rightarrow T_2 :: *} \text{ K-Arrow}$$

#### Remark

Those rules are very similar to the typing rules of  $\lambda_{\rightarrow}$ .

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T} \text{ T-Var} \qquad \qquad \frac{\Gamma,x:T_1\vdash t_2:T_2}{\Gamma\vdash\lambda x:T_1.t_2:T_1\to T_2} \text{ T-Abs} \qquad \qquad \frac{\Gamma\vdash t_1:T_{11}\to T_{12} \qquad \Gamma\vdash t_2:T_{11}}{\Gamma\vdash t_1t_2:T_{12}} \text{ T-App}$$

At the kinding level, the arrow  $\rightarrow$  is like a **type operator with two arguments**! We can assign a kind  $* \Rightarrow * \Rightarrow *$  to  $(\rightarrow)$  and an arrow type can be thought of as an operator application  $(\rightarrow)$  T<sub>1</sub> T<sub>2</sub>.

## Type Equivalence, Definitionally



 $S \equiv T_{:}$  "types S and T are definitionally equivalent"

$$\begin{array}{ll} \overline{T\equiv T} \ \mathsf{Q}\text{-}\mathsf{Refl} & \frac{T\equiv S}{S\equiv T} \ \mathsf{Q}\text{-}\mathsf{Symm} & \frac{S\equiv U \quad U\equiv T}{S\equiv T} \ \mathsf{Q}\text{-}\mathsf{Trans} & \frac{S_1\equiv T_1 \quad S_2\equiv T_2}{S_1\to S_2\equiv T_1\to T_2} \ \mathsf{Q}\text{-}\mathsf{Arrow} \\ \\ & \frac{S_2\equiv T_2}{\lambda X::K_1.\ S_2\equiv \lambda X::K_1.\ T_2} \ \mathsf{Q}\text{-}\mathsf{Abs} & \frac{S_1\equiv T_1 \quad S_2\equiv T_2}{S_1\ S_2\equiv T_1\ T_2} \ \mathsf{Q}\text{-}\mathsf{App} \\ \\ & \overline{(\lambda X::K_{11}.\ T_{12})\ T_2\equiv [X\mapsto T_2]T_{12}} \ \mathsf{Q}\text{-}\mathsf{AppAbs} \end{array}$$

#### **PROPOSITION**

Let us denote the type-level reduction by  $\Rightarrow$ . Then two types S and T are equivalent iff there exists some U such that S  $\Rightarrow^*$  U and T  $\Rightarrow^*$  U.

## Type Equivalence, Computationally



#### $S \Rrightarrow \mathsf{T}$ : "type S parallelly reduces to type $\mathsf{T}$ "

$$\begin{array}{c} \hline \end{array} \begin{array}{c} \begin{array}{c} S_1 \Rightarrow T_1 & S_2 \Rightarrow T_2 \\ \hline \end{array} & \begin{array}{c} S_1 \Rightarrow T_1 & S_2 \Rightarrow T_2 \\ \hline S_1 \rightarrow S_2 \Rightarrow T_1 \rightarrow T_2 \end{array} \begin{array}{c} QR\text{-}ARROW & \begin{array}{c} \begin{array}{c} S_2 \Rightarrow T_2 \\ \hline \lambda X :: K_1 . S_2 \Rightarrow \lambda X :: K_1 . T_2 \end{array} \begin{array}{c} QR\text{-}ABS \end{array} \\ \hline \begin{array}{c} \begin{array}{c} S_1 \Rightarrow T_1 & S_2 \Rightarrow T_2 \\ \hline S_1 \Rightarrow T_1 & S_2 \Rightarrow T_2 \\ \hline S_1 S_2 \Rightarrow T_1 T_2 \end{array} \begin{array}{c} QR\text{-}APP \end{array} & \begin{array}{c} \begin{array}{c} \begin{array}{c} S_{12} \Rightarrow T_{12} & S_2 \Rightarrow T_2 \\ \hline \lambda X :: K_{11} . S_{12} \end{array} \begin{array}{c} S_{12} \Rightarrow T_{12} \\ \hline (\lambda X :: K_{11} . S_{12} ) S_2 \Rightarrow [X \mapsto T_2] T_{12} \end{array} \begin{array}{c} QR\text{-}ABS \end{array} \end{array}$$

#### Example

Let 
$$S \stackrel{\text{def}}{=} \text{Id} \operatorname{Nat} \to \text{Bool} \text{ and } T \stackrel{\text{def}}{=} \text{Id} (\operatorname{Nat} \to \text{Bool}).$$
 Then  
 $S = ((\lambda X :: *. X) \operatorname{Nat}) \to \text{Bool} \Rightarrow \operatorname{Nat} \to \text{Boo}$   
 $T = (\lambda X :: *. X) (\operatorname{Nat} \to \text{Bool}) \Rightarrow \operatorname{Nat} \to \text{Boo}$ 

#### by rule (QR-АррАвs).

Design Principles of Programming Languages, Spring 2023



# The Essence of $\lambda$

Design Principles of Programming Languages, Spring 202;

## The Essence of $\lambda$ : Characterization



#### PRINCIPLE

Types characterize terms. Kinds characterize types.

#### Question

Can we have more than three levels of expressions?

#### Aside (Pure Type Systems, Part I)

Let S be a set of **sorts**, e.g.,  $S = \{*, \Box\}$  where

- \* represents the sort of all (proper) types and
- $\Box$  represents the sort of **all kinds**.

Let M be a set of **axioms**, e.g.,  $M = \{(\emptyset \vdash * : \Box)\}$ , meaning "\* is a kind for (proper) types."

One can definitely add more sorts to S and more axioms to M accordingly!

## The Essence of $\lambda$ : Abstraction



#### PRINCIPLE

- In  $\lambda_{\rightarrow}$ , we use  $\lambda x$ :T. t to abstract terms out of terms.
- In  $\lambda_{\omega}$ , we use  $\lambda X$ ::K. T to abstract types out of types.

#### Aside (Pure Type Systems, Part II)

Let S be a set of sorts, e.g.,  $S = \{*, \Box\}$ . Let M be a set of axioms, e.g.,  $M = \{(\emptyset \vdash * : \Box)\}$ .

Let  $R \subseteq S \times S$  be a set of **rules**: for each  $(s_1, s_2) \in R$ , we have

$$\frac{\Gamma \vdash A : s_1 \qquad \Gamma \vdash B : s_2}{\Gamma \vdash A \rightsquigarrow_{s_2}^{s_1} B : s_2} \text{ Arrow } \frac{\Gamma, x : A \vdash b : B \qquad \Gamma \vdash A \rightsquigarrow_{s_2}^{s_1} B : s_2}{\Gamma \vdash \lambda x : A . b : A \rightsquigarrow_{s_2}^{s_1} B} \text{ Abs}$$

$$\frac{\Gamma \vdash F : A \rightsquigarrow_{s_2}^{s_1} B \qquad \Gamma \vdash a : A}{\Gamma \vdash F a : B} \text{ App}$$



Let  $R \subseteq S \times S$  be a set of **rules**: for each  $(s_1, s_2) \in R$ , we have

$$\frac{\Gamma \vdash A : s_1 \qquad \Gamma \vdash B : s_2}{\Gamma \vdash A \rightsquigarrow_{s_2}^{s_1} B : s_2} \text{ Arrow } \frac{\Gamma, x : A \vdash b : B \qquad \Gamma \vdash A \rightsquigarrow_{s_2}^{s_1} B : s_2}{\Gamma \vdash \lambda x : A . b : A \rightsquigarrow_{s_2}^{s_1} B} \text{ Abs}$$

$$\frac{\Gamma \vdash F : A \rightsquigarrow_{s_2}^{s_1} B \qquad \Gamma \vdash a : A}{\Gamma \vdash F a : B} \text{ App}$$

#### $\lambda_{\rightarrow} :$ Abstracting Terms out of Terms



Let  $R \subseteq S \times S$  be a set of **rules**: for each  $(s_1, s_2) \in R$ , we have

$$\frac{\Gamma \vdash A : s_1 \qquad \Gamma \vdash B : s_2}{\Gamma \vdash A \rightsquigarrow_{s_2}^{s_1} B : s_2} \text{ Arrow } \frac{\Gamma, x : A \vdash b : B \qquad \Gamma \vdash A \rightsquigarrow_{s_2}^{s_1} B : s_2}{\Gamma \vdash \lambda x : A . b : A \rightsquigarrow_{s_2}^{s_1} B} \text{ Abs}$$

$$\frac{\Gamma \vdash F : A \rightsquigarrow_{s_2}^{s_1} B \qquad \Gamma \vdash a : A}{\Gamma \vdash F a : B} \text{ App}$$

$$\begin{split} \lambda_{\omega} &: \text{Abstracting Types out of Types} \\ \text{Let } \mathsf{R} \stackrel{\text{def}}{=} \{(*,*), (\Box, \Box)\}. \text{ Then } \rightsquigarrow_*^* \text{ represents arrow types } \to \text{ and } \rightsquigarrow_{\Box}^{\Box} \text{ represents arrow kinds } \Rightarrow. \\ & \underbrace{\frac{\Gamma \vdash \mathsf{K}_1 : \Box \quad \Gamma \vdash \mathsf{K}_2 : \Box}{\Gamma \vdash \mathsf{K}_1 \rightsquigarrow_{\Box}^{\Box} \mathsf{K}_2 : \Box}}_{\substack{\mathsf{F} \vdash \mathsf{K}_1 \sim \scriptstyle_{\Box}^{\Box} \mathsf{K}_2 : \Box}} & \text{means} \quad \text{``if } \mathsf{K}_1, \mathsf{K}_2 \text{ are kinds, then } \mathsf{K}_1 \Rightarrow \mathsf{K}_2 \text{ is a kind''} \\ & \underbrace{\frac{\Gamma, X : \mathsf{K}_1 \vdash \mathsf{T}_2 : \mathsf{K}_2 \quad \Gamma \vdash \mathsf{K}_1 \rightsquigarrow_{\Box}^{\Box} \mathsf{K}_2 : \Box}{\Gamma \vdash \lambda X : \mathsf{K}_1 . \mathsf{T}_2 : \mathsf{K}_1 \rightsquigarrow_{\Box}^{\Box} \mathsf{K}_2}}_{\substack{\mathsf{F} \vdash \mathsf{T}_1 : \mathsf{K}_{11} \rightsquigarrow_{\Box}^{\Box} \mathsf{K}_{12} \quad \Gamma \vdash \mathsf{T}_2 : \mathsf{K}_{11}}_{\substack{\mathsf{F} \vdash \mathsf{T}_1 \mathsf{T}_2 : \mathsf{K}_{12}}} & \text{means} \quad \text{the typing rule (K-ABS)} \end{split}$$

## The Essence of $\lambda$ : Abstraction

#### PRINCIPLE

In System F, we use  $\lambda X$ . t to abstract **terms** out of **types**.

#### Observation

We can think of  $\lambda X$ . t as  $\lambda X$ :\*. t, i.e., a type abstraction should be applied to a proper type. The type of  $\lambda X$ :\*. t then has the form  $\forall X$ :\*. T—**not an arrow!**  $\forall X$ :\*. T can be thought of as a **dependent arrow** (X:\*)  $\Rightarrow$  T: the domain is a **kind** and the range is a **type**. In next chapter, we will see a generalized form  $\forall X$ ::K. T, or as a dependent arrow (X::K)  $\Rightarrow$  T.

#### Aside (Pure Type Systems, Part III)





$$\frac{\Gamma, x : A \vdash b : B \qquad \Gamma \vdash A \rightsquigarrow_{s_{2}}^{s_{1}} B : s_{2}}{\Gamma \vdash \lambda x : A. b : A \rightsquigarrow_{s_{2}}^{s_{1}} B} ABS \qquad \text{becomes} \qquad \frac{\Gamma, x : A \vdash b : B \qquad \Gamma \vdash (x : A) \rightsquigarrow_{s_{2}}^{s_{1}} B : s_{2}}{\Gamma \vdash \lambda x : A. b : (x : A) \rightsquigarrow_{s_{2}}^{s_{1}} B} ABS^{D}}$$
$$\frac{\Gamma \vdash F : A \rightsquigarrow_{s_{2}}^{s_{1}} B \qquad \Gamma \vdash a : A}{\Gamma \vdash F a : B} APP \qquad \text{becomes} \qquad \frac{\Gamma \vdash F : (x : A) \rightsquigarrow_{s_{2}}^{s_{1}} B \qquad \Gamma \vdash a : A}{\Gamma \vdash F a : [x \mapsto a]B} APP^{D}$$

#### System F: Abstracting Terms out of Types

 $\begin{array}{l} \text{Let } R \stackrel{\text{def}}{=} \{(*,*), (\Box,*)\}. \text{ Then } \rightsquigarrow_*^* \text{ represents arrow types } \rightarrow \text{ and } \rightsquigarrow_*^\Box \text{ represents universal types } \forall. \\ \hline \frac{\Gamma \vdash K_1 : \Box \qquad \Gamma, X : K_1 \vdash T_2 : *}{\Gamma \vdash (X : K_1) \rightsquigarrow_*^\Box T_2 : *} & \text{means "if } K_1 \text{ is a kind and } T_2 \text{ is a type, then } \forall X :: K_1 . T_2 \text{ is a type"} \\ \hline \frac{\Gamma, X : K_1 \vdash t_2 : T_2 \qquad \Gamma \vdash (X : K_1) \rightsquigarrow_*^\Box T_2 : *}{\Gamma \vdash \lambda X : K_1 . t_2 : (X : K_1) \rightsquigarrow_*^\Box T_2} & \text{means the typing rule (T-TABS)} \\ \hline \frac{\Gamma \vdash t_1 : (X : K_{11}) \rightsquigarrow_*^\Box T_{12} \qquad \Gamma \vdash T_2 : K_{11}}{\Gamma \vdash t_1 [T_2] : [X \mapsto T_2] T_{12}} & \text{means the typing rule (T-TAPP)} \end{array}$ 

## The Essence of $\lambda$ : Abstraction

#### Aside (Pure Type Systems, Part IV)

- abstract terms out of terms  $\{(*, *)\}$  $\lambda \rightarrow$ 
  - F abstract terms out of types
  - $\lambda_{ij}$  abstract types out of types
  - F<sub>(1)</sub> F +  $\lambda_{(1)}$  (next chapter) {(\*, \*), ( $\Box$ , \*), ( $\Box$ ,  $\Box$ )}

$$\{(*, *), (\Box, *)\} \\ \{(*, *), (\Box, \Box)\} \\$$

There are eight variants, each of which is (\*, \*) plus a subset of  $\{(\Box, *), (\Box, \Box), (*, \Box)\}$ !

#### **Ouestion**

What does the rule  $(*, \Box)$  mean? "Abstracting types out of terms by  $\lambda x:T. T$ ?"

$$\frac{\Gamma \vdash T_{1} : \ast \qquad \Gamma, x : T_{1} \vdash K_{2} : \Box}{\Gamma \vdash (x;T_{1}) \rightsquigarrow_{\Box}^{\ast} K_{2} : \Box} \operatorname{Arrow}^{\mathsf{D}} \qquad \frac{\Gamma, x : T_{1} \vdash T_{2} : K_{2} \qquad \Gamma \vdash (x;T_{1}) \rightsquigarrow_{\Box}^{\ast} K_{2} : \Box}{\Gamma \vdash \lambda x; T_{1} \cdot T_{2} : (x;T_{1}) \rightsquigarrow_{\Box}^{\ast} K_{2}} \operatorname{Abs}^{\mathsf{D}}$$

$$\frac{\Gamma \vdash T_{1} : (x;T_{11}) \rightsquigarrow_{\Box}^{\ast} K_{12} \qquad \Gamma \vdash t_{2} : T_{11}}{\Gamma \vdash T_{1} [t_{2}] : [x \mapsto t_{2}] K_{12}} \operatorname{App}^{\mathsf{D}}$$





$$\begin{split} \mathsf{K} &\coloneqq \ast \mid (x{:}\mathsf{T}) \rightsquigarrow_{\Box}^{\ast} \mathsf{K} \\ \mathsf{T} &\coloneqq \mathsf{Nat} \mid \lambda x{:}\mathsf{T}. \mathsf{T} \mid \mathsf{T} [\mathsf{t}] \mid (x{:}\mathsf{T}) \rightsquigarrow_{\ast}^{\ast} \mathsf{T} \\ \mathsf{t} &\coloneqq \mathsf{zero} \mid \mathsf{succ}(\mathsf{t}) \mid x \mid \lambda x{:}\mathsf{T}. \mathsf{t} \mid \mathsf{t} \mathsf{t} \end{split}$$

$$\frac{\Gamma, \mathbf{x}: \mathsf{T}_{1} \vdash \mathsf{T}_{2} :: \mathsf{K}_{2} \qquad \Gamma \vdash \mathsf{T}_{1} :: *}{\Gamma \vdash \lambda \mathbf{x}: \mathsf{T}_{1} \cdot \mathsf{T}_{2} :: (\mathbf{x}: \mathsf{T}_{1}) \rightsquigarrow_{\Box}^{*} \mathsf{K}_{2}} \quad \mathsf{K}\text{-VABS} \qquad \frac{\Gamma \vdash \mathsf{T}_{1} :: (\mathbf{x}: \mathsf{T}_{11}) \rightsquigarrow_{\Box}^{*} \mathsf{K}_{12} \qquad \Gamma \vdash \mathsf{t}_{2} :: \mathsf{T}_{11}}{\Gamma \vdash \mathsf{T}_{1} :: (\mathbf{x}: \mathsf{T}_{1}) \rightsquigarrow_{\Box}^{*} \mathsf{T}_{12}} \quad \mathsf{K}\text{-VAPP}$$

$$\frac{\Gamma, \mathbf{x}: \mathsf{T}_{1} \vdash \mathsf{t}_{2} :: \mathsf{T}_{2} \qquad \Gamma \vdash \mathsf{T}_{1} :: *}{\Gamma \vdash \lambda \mathbf{x}: \mathsf{T}_{1} \cdot \mathsf{t}_{2} :: (\mathbf{x}: \mathsf{T}_{1}) \rightsquigarrow_{*}^{*} \mathsf{T}_{2}} \quad \mathsf{T}\text{-ABS} \qquad \frac{\Gamma \vdash \mathsf{t}_{1} :: (\mathbf{x}: \mathsf{T}_{11}) \rightsquigarrow_{*}^{*} \mathsf{T}_{12} \qquad \Gamma \vdash \mathsf{t}_{2} :: \mathsf{T}_{11}}{\Gamma \vdash \mathsf{t}_{1} :: (\mathbf{x}: \mathsf{T}_{12}) : \mathsf{T} \vdash \mathsf{t}_{2} :: \mathsf{T}_{12}} \quad \mathsf{T}\text{-APP}$$

#### Example (Dependent Types)

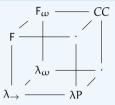
Consider the type NatList and its two introduction terms nil and cons.

```
\begin{split} & \text{NatList :: Nat} \rightsquigarrow_{\square}^{*} * \\ & \text{nil: NatList [zero]} \\ & \text{cons: } (n: \text{Nat}) \rightsquigarrow_{*}^{*} \text{Nat} \rightsquigarrow_{*}^{*} \text{NatList } [n] \rightsquigarrow_{*}^{*} \text{NatList } [\text{succ}(n)] \end{split}
```

## The Lambda Cube



Aside (Pure Type Systems, Part V)



- $\lambda_{
  ightarrow}$  simply-typed lambda-calculus
- F parametric polymorphism  $\{(*, *), (\Box, *)\}$
- $\lambda_\omega$  type operators
- $\lambda P$  dependent types
- $F_{\omega}$  higher-order polymorphism
- CC calculus of constructions