
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang
赵海燕，王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 2023 1

Chap 29: Type Operators and Kinding

Type-Level Functions
Kinding

λω

The Essence of λ

Design Principles of Programming Languages, Spring 2023 2

We Have Studied …
PRINCIPLE
The uses of type systems go far beyond their role in detecting errors.

• Type systems offer crucial support for programming: abstraction, safety, efficiency, …
• Language design shall go hand-in-hand with type-system design.

λ→: Simply-Typed Lambda Calculus Extensions: Tuples, Sums, Lists, …

Effects: References, Exceptions, …λ<:: Subtypingλµ: Recursive Types

System F: Polymorphism

Remark
• Different combinations of features lead to different languages.
• Some combinations turn out to be very tricky!

Design Principles of Programming Languages, Spring 2023 3

The Essence ofλ

PRINCIPLE
• Types characterize terms.
• Building abstractions:

• In λ→, we use λx:T . t to abstract terms out of terms.
• In System F, we use λX. t to abstract terms out of types.

Question
• Is it possible to further characterize types?
• Are these combinations meaningful?

• Abstract types out of types? “λX. T ”?
• Abstract types out of terms? “λx:T . T ”?

Design Principles of Programming Languages, Spring 2023 4

Characterization of Types
CBool = ∀ X. X → X → X; Abbreviation
Pair Y Z = ∀ X. (Y→Z→X) → X; Parametric Abbreviation

Observation
• Pair is like a type-level function.
• Similar notions include Array T and Ref T .

Abstract Types out of Types!

Pair = λ Y. λ Z. ∀ X. (Y→Z→ X) → X

Design Principles of Programming Languages, Spring 2023 5

Type-Level Computation

Observation
Introducing abstraction and application at the type level allows writing the same type in different ways.

Example

Id = λ X. X
Then, the following types are all equivalent:

Nat → Bool Nat → Id Bool Id Nat → Id Bool
Id Nat → Bool Id (Nat → Bool) Id (Id (Id Nat → Bool))

PROPOSITION
Let us denote the type-level reduction by⇛.
Then two types S and T are equivalent iff there exists some U such that S⇛∗ U and T ⇛∗ U.

Design Principles of Programming Languages, Spring 2023 6

Kinding

Design Principles of Programming Languages, Spring 2023 7

Kinds
Observation
Type-level computation brings the issue of writing meaningless type expressions.

(Bool Nat) (Pair Bool Bool Nat) (Pair Pair)

Kinds: “The Types of Types”
Kinds characterize types, in the same sense as types characterize terms.

∗ the kind of proper types (like Bool and Bool→Bool)
∗ ⇒ ∗ the kind of type operators (i.e., functions from proper types to proper types)
∗ ⇒ ∗ ⇒ ∗ the kind of functions from proper types to type operators (i.e., two-argument operators)
(∗ ⇒ ∗) ⇒ ∗ the kind of functions from type operators to proper types

Type-Level Functions (λX::K. T)

Pair = λ Y :: *. λ Z :: *. ∀ X. (Y→Z→ X) → X
Design Principles of Programming Languages, Spring 2023 8

Terms, Types, and Kinds

5 λx:Nat. x (λx:Nat. x) 5 (λx:Nat. x) true λX. λx:X. x pair [Nat] [Bool] 5 false Terms

Nat Nat → Nat ∀X.X → X Pair Nat Bool Pair Nat λX.X Pair Pair Pair Types

type error

∗ ∗ ⇒ ∗ ∗ ⇒ ∗ ⇒ ∗ Kinds

kind error

Question
• What is the difference between ∀X.X → X and λX.X → X?
• Why doesn’t an arrow type Nat → Nat have an arrow kind like ∗ ⇒ ∗?

Design Principles of Programming Languages, Spring 2023 9

λω
λ→ with Type-Level Functions and Kinding

Design Principles of Programming Languages, Spring 2023 10

Syntax
t ::= terms:

x variable
λx:T . t abstraction
t t application

v ::= values:
λx:T . t abstraction value

T ::= types:
X type variable
λX::K. T operator abstraction
T T operator application
T → T type of functions

Γ ::= contexts:
∅ empty context
Γ , x : T term variable binding
Γ ,X :: K type variable binding

K ::= kinds:
∗ kind of proper types
K ⇒ K kind of operators

Design Principles of Programming Languages, Spring 2023 11

Evaluation and Typing

Evaluation

t1 −→ t ′1
t1 t2 −→ t ′1 t2

E-APP1
t2 −→ t ′2

v1 t2 −→ v1 t
′
2

E-APP2
(λx:T11. t12) v2 −→ [x 7→ v2]t12

E-APPABS

Typing

x : T ∈ Γ

Γ ` x : T
T-VAR

Γ ` T1 :: ∗ Γ , x : T1 ` t2 : T2

Γ ` λx:T1. t2 : T1 → T2
T-ABS

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
T-APP

Γ ` t : S S ≡ T Γ ` T :: ∗
Γ ` t : T

T-EQ

Design Principles of Programming Languages, Spring 2023 12

Kinding
Γ ` T :: K: “type T has kind K in context Γ ”

X :: K ∈ Γ

Γ ` X :: K
K-TVAR

Γ ,X :: K1 ` T2 :: K2

Γ ` λX::K1. T2 :: K1 ⇒ K2

K-ABS

Γ ` T1 :: K11 ⇒ K12 Γ ` T2 :: K11

Γ ` T1 T2 :: K12

K-APP
Γ ` T1 :: ∗ Γ ` T2 :: ∗

Γ ` T1 → T2 :: ∗
K-ARROW

Remark
Those rules are very similar to the typing rules of λ→.

x : T ∈ Γ

Γ ` x : T
T-VAR

Γ , x : T1 ` t2 : T2

Γ ` λx:T1. t2 : T1 → T2
T-ABS

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
T-APP

At the kinding level, the arrow → is like a type operator with two arguments!
We can assign a kind ∗ ⇒ ∗ ⇒ ∗ to (→) and an arrow type can be thought of as an operator application (→) T1 T2.
Design Principles of Programming Languages, Spring 2023 13

Type Equivalence, Definitionally

S ≡ T : “types S and T are definitionally equivalent”

T ≡ T
Q-REFL

T ≡ S

S ≡ T
Q-SYMM

S ≡ U U ≡ T

S ≡ T
Q-TRANS

S1 ≡ T1 S2 ≡ T2

S1 → S2 ≡ T1 → T2
Q-ARROW

S2 ≡ T2

λX::K1.S2 ≡ λX::K1. T2
Q-ABS

S1 ≡ T1 S2 ≡ T2

S1 S2 ≡ T1 T2
Q-APP

(λX::K11. T12) T2 ≡ [X 7→ T2]T12
Q-APPABS

PROPOSITION
Let us denote the type-level reduction by⇛.
Then two types S and T are equivalent iff there exists some U such that S⇛∗ U and T ⇛∗ U.

Design Principles of Programming Languages, Spring 2023 14

Type Equivalence, Computationally
S⇛ T : “type S parallelly reduces to type T ”

T ⇛ T
QR-REFL

S1 ⇛ T1 S2 ⇛ T2

S1 → S2 ⇛ T1 → T2
QR-ARROW

S2 ⇛ T2

λX::K1.S2 ⇛ λX::K1. T2
QR-ABS

S1 ⇛ T1 S2 ⇛ T2

S1 S2 ⇛ T1 T2
QR-APP

S12 ⇛ T12 S2 ⇛ T2

(λX::K11.S12) S2 ⇛ [X 7→ T2]T12
QR-APPABS

Example
Let S def

= Id Nat → Bool and T
def
= Id (Nat → Bool). Then

S = ((λX::∗.X) Nat) → Bool⇛ Nat → Bool,
T = (λX::∗.X) (Nat → Bool)⇛ Nat → Bool,

by rule (QR-APPABS).

Design Principles of Programming Languages, Spring 2023 15

The Essence ofλ

Design Principles of Programming Languages, Spring 2023 16

The Essence ofλ: Characterization
PRINCIPLE
Types characterize terms. Kinds characterize types.

Question
Can we have more than three levels of expressions?

Aside (Pure Type Systems, Part I)
Let S be a set of sorts, e.g., S = {∗,□} where

• ∗ represents the sort of all (proper) types and
• □ represents the sort of all kinds.

Let M be a set of axioms, e.g., M = {(∅ ` ∗ : □)}, meaning “∗ is a kind for (proper) types.”

One can definitely add more sorts to S and more axioms to M accordingly!

Design Principles of Programming Languages, Spring 2023 17

The Essence ofλ: Abstraction
PRINCIPLE

• In λ→, we use λx:T . t to abstract terms out of terms.
• In λω, we use λX::K. T to abstract types out of types.

Aside (Pure Type Systems, Part II)
Let S be a set of sorts, e.g., S = {∗,□}. Let M be a set of axioms, e.g., M = {(∅ ` ∗ : □)}.

Let R ⊆ S× S be a set of rules: for each (s1, s2) ∈ R, we have

Γ ` A : s1 Γ ` B : s2

Γ ` A⇝s1
s2 B : s2

ARROW
Γ , x : A ` b : B Γ ` A⇝s1

s2 B : s2

Γ ` λx:A.b : A⇝s1
s2 B

ABS

Γ ` F : A⇝s1
s2 B Γ ` a : A

Γ ` F a : B
APP

Design Principles of Programming Languages, Spring 2023 18

Let R ⊆ S× S be a set of rules: for each (s1, s2) ∈ R, we have

Γ ` A : s1 Γ ` B : s2

Γ ` A⇝s1
s2 B : s2

ARROW
Γ , x : A ` b : B Γ ` A⇝s1

s2 B : s2

Γ ` λx:A.b : A⇝s1
s2 B

ABS

Γ ` F : A⇝s1
s2 B Γ ` a : A

Γ ` F a : B
APP

λ→: Abstracting Terms out of Terms
Let R def

= {(∗, ∗)}. Then⇝∗
∗ represents arrow types →.

Γ ` T1 : ∗ Γ ` T2 : ∗
Γ ` T1 ⇝∗

∗ T2 : ∗
means “if T1, T2 are types, then T1 → T2 is a type”

Γ , x : T1 ` t2 : T2 Γ ` T1 ⇝∗
∗ T2 : ∗

Γ ` λx:T1. t2 : T1 ⇝∗
∗ T2

means the typing rule (T-ABS)

Γ ` t1 : T11 ⇝∗
∗ T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
means the typing rule (T-APP)

Design Principles of Programming Languages, Spring 2023 19

Let R ⊆ S× S be a set of rules: for each (s1, s2) ∈ R, we have

Γ ` A : s1 Γ ` B : s2

Γ ` A⇝s1
s2 B : s2

ARROW
Γ , x : A ` b : B Γ ` A⇝s1

s2 B : s2

Γ ` λx:A.b : A⇝s1
s2 B

ABS

Γ ` F : A⇝s1
s2 B Γ ` a : A

Γ ` F a : B
APP

λω: Abstracting Types out of Types
Let R def

= {(∗, ∗), (□,□)}. Then⇝∗
∗ represents arrow types → and⇝□

□ represents arrow kinds ⇒.
Γ ` K1 : □ Γ ` K2 : □

Γ ` K1 ⇝□
□ K2 : □

means “if K1,K2 are kinds, then K1 ⇒ K2 is a kind”

Γ ,X : K1 ` T2 : K2 Γ ` K1 ⇝□
□ K2 : □

Γ ` λX:K1. T2 : K1 ⇝□
□ K2

means the typing rule (K-ABS)

Γ ` T1 : K11 ⇝□
□ K12 Γ ` T2 : K11

Γ ` T1 T2 : K12

means the typing rule (K-APP)

Design Principles of Programming Languages, Spring 2023 20

The Essence ofλ: Abstraction
PRINCIPLE
In System F, we use λX. t to abstract terms out of types.

Observation
We can think of λX. t as λX::∗. t, i.e., a type abstraction should be applied to a proper type.
The type of λX::∗. t then has the form ∀X::∗. T—not an arrow!
∀X:: ∗ . T can be thought of as a dependent arrow (X::∗)⇒ T : the domain is a kind and the range is a type.
In next chapter, we will see a generalized form ∀X::K. T , or as a dependent arrow (X::K)⇒ T .

Aside (Pure Type Systems, Part III)
Let R ⊆ S× S be a set of rules: for each (s1, s2) ∈ R, we have

Γ ` A : s1 Γ ` B : s2

Γ ` A⇝s1
s2 B : s2

ARROW becomes
Γ ` A : s1 Γ , x : A ` B : s2

Γ ` (x:A)⇝s1
s2 B : s2

ARROWD

Then (X : ∗)⇝□
∗ T represents ∀X:: ∗ . T !

Design Principles of Programming Languages, Spring 2023 21

Γ , x : A ` b : B Γ ` A⇝s1
s2 B : s2

Γ ` λx:A.b : A⇝s1
s2 B

ABS becomes
Γ , x : A ` b : B Γ ` (x:A)⇝s1

s2 B : s2

Γ ` λx:A.b : (x:A)⇝s1
s2 B

ABSD

Γ ` F : A⇝s1
s2 B Γ ` a : A

Γ ` F a : B
APP becomes

Γ ` F : (x:A)⇝s1
s2 B Γ ` a : A

Γ ` F a : [x 7→ a]B
APPD

System F: Abstracting Terms out of Types
Let R def

= {(∗, ∗), (□, ∗)}. Then⇝∗
∗ represents arrow types → and⇝□

∗ represents universal types ∀.
Γ ` K1 : □ Γ ,X : K1 ` T2 : ∗

Γ ` (X : K1)⇝□
∗ T2 : ∗

means “if K1 is a kind and T2 is a type, then ∀X::K1. T2 is a type”

Γ ,X : K1 ` t2 : T2 Γ ` (X:K1)⇝□
∗ T2 : ∗

Γ ` λX:K1. t2 : (X:K1)⇝□
∗ T2

means the typing rule (T-TABS)

Γ ` t1 : (X:K11)⇝□
∗ T12 Γ ` T2 : K11

Γ ` t1 [T2] : [X 7→ T2]T12
means the typing rule (T-TAPP)

Design Principles of Programming Languages, Spring 2023 22

The Essence ofλ: Abstraction
Aside (Pure Type Systems, Part IV)

λ→ abstract terms out of terms {(∗, ∗)}
F abstract terms out of types {(∗, ∗), (□, ∗)}
λω abstract types out of types {(∗, ∗), (□,□)}
Fω F + λω (next chapter) {(∗, ∗), (□, ∗), (□,□)}

There are eight variants, each of which is (∗, ∗) plus a subset of {(□, ∗), (□,□), (∗,□)}!

Question
What does the rule (∗,□) mean? “Abstracting types out of terms by λx:T . T ?”

Γ ` T1 : ∗ Γ , x : T1 ` K2 : □
Γ ` (x:T1)⇝∗

□ K2 : □
ARROWD Γ , x : T1 ` T2 : K2 Γ ` (x:T1)⇝∗

□ K2 : □
Γ ` λx:T1. T2 : (x:T1)⇝∗

□ K2

ABSD

Γ ` T1 : (x:T11)⇝∗
□ K12 Γ ` t2 : T11

Γ ` T1 [t2] : [x 7→ t2]K12

APPD

Design Principles of Programming Languages, Spring 2023 23

K ::= ∗ | (x:T)⇝∗
□ K

T ::= Nat | λx:T . T | T [t] | (x:T)⇝∗
∗ T

t ::= zero | succ(t) | x | λx:T . t | t t

Γ , x : T1 ` T2 :: K2 Γ ` T1 :: ∗
Γ ` λx:T1. T2 :: (x:T1)⇝∗

□ K2

K-VABS
Γ ` T1 :: (x:T11)⇝∗

□ K12 Γ ` t2 : T11

Γ ` T1 [t2] :: [x 7→ t2]K12

K-VAPP

Γ , x : T1 ` t2 : T2 Γ ` T1 :: ∗
Γ ` λx:T1. t2 : (x:T1)⇝∗

∗ T2
T-ABS

Γ ` t1 : (x:T11)⇝∗
∗ T12 Γ ` t2 : T11

Γ ` t1 t2 : [x 7→ t2]T12
T-APP

Example (Dependent Types)
Consider the type NatList and its two introduction terms nil and cons.

NatList :: Nat⇝∗
□ ∗

nil : NatList [zero]
cons : (n:Nat)⇝∗

∗ Nat⇝∗
∗ NatList [n]⇝∗

∗ NatList [succ(n)]
Design Principles of Programming Languages, Spring 2023 24

The Lambda Cube

Aside (Pure Type Systems, Part V)

λ→ λP

F ·

λω ·

Fω CC

λ→ simply-typed lambda-calculus {(∗, ∗)}
F parametric polymorphism {(∗, ∗), (□, ∗)}
λω type operators {(∗, ∗), (□,□)}
λP dependent types {(∗, ∗), (∗,□)}
Fω higher-order polymorphism {(∗, ∗), (□, ∗), (□,□)}
CC calculus of constructions {(∗, ∗), (□, ∗), (□,□), (∗,□)}

Design Principles of Programming Languages, Spring 2023 25

