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We Have Studied …

λ→: Simply-Typed Lambda Calculus Extensions: Tuples, Sums, Lists, …

Effects: References, Exceptions, …λ<:: Subtypingλµ: Recursive Types

System F: Polymorphism

λω: Type Operators λP: Dependent Types

Remark
• Different combinations of features lead to different languages.
• Some combinations turn out to be very tricky!
• This chapter studies the combination of polymorphism and type operators.
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Fω
The Combination of System F and λω
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Syntax and Evaluation

Syntax

t ::= x | λx:T . t | t t | λX::K. t | t [T ] | {*T , t} as T | let {X, x} = t in t
v ::= λx:T . t | λX::K. t | {*T , v} as T
T ::= X | T → T | ∀X::K. T | λX::K. T | T T | {∃X::K, T}
Γ ::= ∅ | Γ , x : T | Γ ,X :: K

K ::= ∗ | K ⇒ K

Evaluation

(λX::K11. t12) [T2] −→ [X 7→ T2]t12
E-TAPPTABS
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Typing, Kinding, and Type Equivalence
Typing

Γ ,X :: K1 ` t2 : T2

Γ ` λX::K1. t2 : ∀X::K1. T2
T-TABS

Γ ` t1 : ∀X::K11. T12 Γ ` T2 :: K11

Γ ` t1 [T2] : [X 7→ T2]T12
T-TAPP

Γ ` t2 : [X 7→ U]T2 Γ ` {∃X::K1, T2} :: ∗
Γ ` {*U, t2} as {∃X::K1, T2} : {∃X::K1, T2}

T-PACK

Γ ` t1 : {∃X::K11, T12}
Γ ,X::K11, x : T12 ` t2 : T2

Γ ` let {X, x} = t1 in t2 : T2
T-UNPACK

Kinding and Type Equivalence

Γ ,X :: K1 ` T2 :: ∗
Γ ` ∀X::K1. T2 :: ∗

K-ALL
Γ ,X :: K1 ` T2 :: ∗

Γ ` {∃X::K1, T2} :: ∗
K-SOME

S2 ≡ T2

∀X::K1.S2 ≡ ∀X::K1. T2
Q-ALL

S2 ≡ T2

{∃X::K1,S2} ≡ {∃X::K1, T2}
Q-SOME
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Examples
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Review: Abstract Data Types (ADTs)
Definition
An abstract data type (ADT) consists of

• a type name A,
• a concrete representation type T,
• implementations of some operations for creating, querying, and manipulating values of type T, and
• an abstraction boundary enclosing the representation and operations.

counterADT =
{*Nat, {new = 1,

get = λ i:Nat. i,
inc = λ i:Nat. succ(i)}}

as {∃ Counter,
{new: Counter, get: Counter→Nat, inc: Counter→Counter}};

▶ counterADT : {∃ Counter,
{new:Counter,get:Counter→Nat,inc:Counter→Counter}}
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Abstract Type Operators

Question
We want to implement an ADT of pairs.

• The ADT provides operations for building pairs and taking them apart.
• Those operations are polymorphic.

The abstract type Pair is not a proper type, but an abstract type operator!
PairSig = {∃ Pair :: *⇒*⇒ *,

{pair: ∀ X. ∀ Y. X→Y→(Pair X Y),
fst: ∀ X. ∀ Y. (Pair X Y)→X,
snd: ∀ X. ∀ Y. (Pair X Y)→Y}};
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Abstract Type Operators

Example
pairADT = {*λ X. λ Y. ∀ R. (X→Y→R) → R,

{pair = λ X. λ Y. λ x:X. λ y:Y. λ R. λ p:X→Y→R. p x y,
fst = λ X. λ Y. λ p: ∀ R. (X→Y→R) → R. p [X] (λ x:X. λ y:Y. x),
snd = λ X. λ Y. λ p: ∀ R. (X→Y→R) → R. p [Y] (λ x:X. λ y:Y. y)}}

as PairSig;
▶ pairADT : PairSig

let {Pair,pair} = pairADT
in pair.fst [Nat] [Bool] (pair.pair [Nat] [Bool] 5 true);
▶ 5 : Nat
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More Examples

Option: Combination with Variants
Option = λ X. <none:Unit,some:X>;
none = λ X. <none=unit> as (Option X);
▶ none : ∀ X. (Option X)
some = λ X. λ x:X. <some=x> as (Option X);
▶ some : ∀ X. X → (Option X)

List: Combination with Variants, Tuples, and Recursive Types
List = µ(L :: X⇒ X). λ X. <nil:Unit,cons:{X,(L X)}>;
nil = λ X. <nil=unit> as (List X);
▶ nil : ∀ X. (List X)
cons = λ X. λ h:X. λ t:(List X). <cons={h,t}> as (List X);
▶ cons : ∀ X. X → (List X) → (List X)
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More Examples
Queue: Implementing a Queue using Two Lists
QueueSig = {∃ Q :: *⇒ *,

{empty: ∀ X. (Q X),
insert: ∀ X. X → (Q X) → (Q X),
remove: ∀ X. (Q X) → Option {X,(Q X)}}};

queueADT = {*λ X. {List X,List X},
{empty = λ X. {nil [X],nil [X]},
insert = λ X. λ a:X. λ q:{List X,List X}. {(cons [X] a q.1),q.2},
remove =
λ X. λ q:{List X,List X}.
let q' = case q.2 of <nil=u> ⇒ {nil [X], reverse [X] q.1}

| <cons={h,t}> ⇒ q
in case q'.2 of
<nil=u> ⇒ none [{X,{List X,List X}}]

| <cons={h,t}> ⇒ some [{X,{List X,List X}}] {h,{q'.1,t}}}} as QueueSig;
▶ queueADT : QueueSig
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Properties
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Type Equivalence and Reduction
Review: Parallel Reduction (S ⇛ T )

T ⇛ T
QR-REFL

S1 ⇛ T1 S2 ⇛ T2

S1 → S2 ⇛ T1 → T2
QR-ARROW

S2 ⇛ T2

λX::K1.S2 ⇛ λX::K1. T2
QR-ABS

S1 ⇛ T1 S2 ⇛ T2

S1 S2 ⇛ T1 T2
QR-APP

S12 ⇛ T12 S2 ⇛ T2

(λX::K11.S12) S2 ⇛ [X 7→ T2]T12
QR-APPABS

S2 ⇛ T2

∀X::K1.S2 ⇛ ∀X::K1. T2
QR-ALL

S2 ⇛ T2

{∃X::K1,S2} ⇛ {∃X::K1, T2}
QR-SOME

PROPOSITION
• If S ⇛∗ U and T ⇛∗ U for some U, then S ≡ T . (Corollary of LEMMA 30.3.5)
• If S ≡ T , then there is some U such that S ⇛∗ U and T ⇛∗ U. (COROLLARY 30.3.11)
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Preservation
Observation
The structural rule (T-EQ) makes induction proof difficult:

Γ ` t : S S ≡ T Γ ` T :: ∗
Γ ` t : T

T-EQ

Preservation of Shapes (for Arrows)
If S1 → S2 ⇛∗ T , then T = T1 → T2 with S1 ⇛∗ T1 and S2 ⇛∗ T2.

Inversion (for Arrows)
If Γ ` λx:S1. s2 : T1 → T2, then T1 ≡ S1 and Γ , x : S1 ` s2 : T2. Also Γ ` S1 :: ∗.

THEOREM (30.3.14)
If Γ ` t : T and t −→ t ′, then Γ ` t ′ : T .
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Progress

Canonical Forms (for Arrows)
IF t is a closed value with ∅ ` t : T1 → T2, then t is an abstraction.

THEOREM (30.3.16)
Suppose t is a closed, well-typed term (that is, ∅ ` t : T for some T ). Then either t is a value or else there is some
t ′ with t −→ t ′.

Design Principles of Programming Languages, Spring 2023 16



Decidability
Observation
The kinding relation is decidable, because kinding is a “simply-typed lambda-calculus” at the type level.

Suppose that we remove the one structural rule (T-EQ).

Example

Γ ` t1 : (λX::∗.X → X) Nat Γ ` t2 : Nat
Γ ` t1 t2 : Nat T-APP

We need to rewrite the type of t1 to bring an arrow to the outside.

Solution
We can reduce the type of t1 to a normal form, e.g., (λX::∗.X → X) Nat ⇛∗ Nat → Nat.
Parallel reduction always normalizes for well-kinded types, by a similar argument for the normalization of
simply-typed lambda-calculus (Chapter 12).
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Decidability

Aside (Weak-Head Reduction)

T1 ⇛wh T ′
1

T1 T2 ⇛wh T ′
1 T2

WH-APP
(λX::K11. T12) T2 ⇛wh [X 7→ T2]T12

WH-APPABS

Weak-head reduction only reduces leftmost, outermost redexes and stops at a concrete constructor (e.g., arrows).

(λX::∗. Id (X → X)) (Id Nat)
⇛wh Id ((Id Nat) → (Id Nat))

= (λY::∗. Y) ((Id Nat) → (Id Nat))
⇛wh (Id Nat) → (Id Nat)
/⇛wh .
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Decidability

Example

Γ ` t1 : T11 → T12 Γ ` t2 : T2

Γ ` t1 t2 : T12
T-APP

We need to check the equivalence between T2 and T11.

Solution
We can again reduce both T2 and T11 to their normal forms.
For example, T2 ⇛∗ S1 and T11 ⇛∗ S2 where S1 and S2 are identical (modulo the names of bound variables).
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Fragments of Fω
Definition
In System F1, the only kind is ∗ and no quantification (∀) or abstraction (λ) over types is permitted.
The remaining systems are defined with reference to a hierarchy of kinds at level i:

K1 = ∅
Ki+1 = {∗}∪ {J ⇒ K | J ∈ Ki ∧K ∈ Ki+1}

Kω =
∪

1⩽iKi

Example

• System F1 is the simply-typed lambda-calculus λ→.
• In System F2, we have K2 = {∗}, so there is no lambda-abstraction at the type level but we allow

quantification over proper types.
• F2 is just the System F; this is why System F is also called the second-order lambda-calculus.

• For System F3, we have K3 = {∗, ∗ ⇒ ∗, ∗ ⇒ ∗ ⇒ ∗, . . .}, i.e., type-level abstractions are over proper types.
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Design Principles of
Programming Languages
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Key Takeaways

PRINCIPLE
• The uses of type systems go far beyond their role in detecting errors.
• Type systems offer crucial support for programming: abstraction, safety, efficiency, …
• Language design shall go hand-in-hand with type-system design.

λ→: Simply-Typed Lambda Calculus Extensions: Tuples, Sums, Lists, …

Effects: References, Exceptions, …λ<:: Subtypingλµ: Recursive Types

System F: Polymorphism

λω: Type Operators λP: Dependent Types
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