wiTIE S Bt RIE
Design Principles of
Programming Languages

Haiyan Zhao, Di Wang
X, @

Peking University, Spring Term 2023

Chap3o: Higher-Order Polymorphism

System F,
Examples

Properties

We Have Studied ...

’ Aw: Type Operators ‘ ’ AP: Dependent Types ‘

’ System F: Polymorphism A, : Simply-Typed Lambda Calculus Extensions: Tuples, Sums, Lists, ... ‘

AN

N

’ AL: Recursive Types ‘ A—.: Subtyping

Remark

Effects: References, Exceptions, ... ‘

e Different combinations of features lead to different languages.
® Some combinations turn out to be very tricky!

® This chapter studies the combination of polymorphism and type operators.

Fow

The Combination of System Fand A,

Syntax and Evaluation

Syntax

Evaluation

to=x | AT .ttt | AXaK. t|t[T]| {*T,t}asT|let{X,x} =tint
vi= AT t | AX:K.t | {*T,v}asT
Ta=X|T—=TIVCKTIAXK. T TT|{3X:K, T}

=g |x:T|T,X:K

Ki=x%|K=K

E-TAPPTABS

(AX:Kq1.t12) [To] — X = Toltq2

Typing, Kinding, and Type Equivalence
Typing

MNX:KykFty: Ty
I AX:KG .ty s VXEK L T,

Mty VXK. T T, =K
T-TABS ! 1112 2 1 T-TApp
MEty [To]: X = T2]Tq2

Tty {3XeKqq, iz}
XKy, x:Tio Bt T
- T-UNPACK
I-let{X,x} =t;inty: T»

Nt :[X— UT, FF{EXZZK],Tz}::*
T-PAcK
'k {*U,tz} as {HXIZK],Tz} : {HXZZK],Tz}

Kinding and Type Equivalence

F,X::Kl}—TZ::*KA XKy Ty«
— C KAL
MEVX:Ky. T o FE{3X:Kq, T} o=

K-SoME

SZ = Tz
VX:Kq.S: = VXK. T

52 ETZ
Q-ALL
{3X:Kq, 82} = {3IXeKq, To }

Q-SoME

Examples

Review: Abstract Data Types (ADTs)

An abstract data type (ADT) consists of
® atype nameA,
® aconcrete representation type T,
® implementations of some operations for creating, querying, and manipulating values of type T, and

® anabstraction boundary enclosing the representation and operations.

counterADT =
{*Nat, {new = 1,

get = Ai:Nat. 1,

inc = Ai:Nat. succ(i)}}
as {3 Counter,

{new: Counter, get: Counter—Nat, inc: Counter—Counter}};
» counterADT : {3 Counter,
{new:Counter, get:Counter—Nat, inc:Counter—Counter}}

Abstract Type Operators

We want to implement an ADT of pairs.
® The ADT provides operations for building pairs and taking them apart.
® Those operations are polymorphic.

The abstract type Pair is not a proper type, but an abstract type operator!
PairSig = {dPair : *=*=*,
{pair: VX. VY. X—=Y—=(Pair X Y),
fst: VX. VY. (Pair X Y)—X,
snd: VX. VY. (Pair X Y)=VY}};

Abstract Type Operators

Example
pairADT = {*AX. AY. VR. (X=Y—=R) — R,

{pair = AX. AY. Ax:X. Ay:Y. AR. Ap:X=Y=R. p x v,
fst = AX. AY. Ap: VR. (X=Y—=R) — R. p [X] (Ax:X. Ay:Y. x),
snd = AX. AY. Ap: VR. (X=Y—=R) — R. p [Y] (Ax:X. Ay:Y. y)}}

as PairSig;
» pairADT : PairSig

let {Pair,pair} = pairADT
in pair.fst [Nat] [Bool] (pair.pair [Nat] [Bool] 5 true);

» 5 : Nat

More Examples

Option: Combination with Variants

Option = AX. <none:Unit, some:X>;

none = AX. <none=unit> as (Option X);

» none : VX. (Option X)

some = AX. Ax:X. <some=x> as (Option X);
» some : VX. X — (Option X)

List: Combination with Variants, Tuples, and Recursive Types

List = (L = X=X). AX. <nil:Unit,cons:{X, (L X)}>;

nil = AX. <nil=unit> as (List X);

» nil : VX. (List X)

cons = AX. Ah:X. At:(List X). <cons={h,t}> as (List X);
» cons : VYX. X — (List X) — (List X)

More Examples

Queue: Implementing a Queue using Two Lists

QueueSig = {3Q = *=*,
{empty: VX. (Q X),
insert: VX. X — (@ X) — (Q X),
remove: VX. (Q X) — Option {X,(Q X)}}};
queueADT = {*AX. {List X,List X},
fempty = AX. {nil [X],nil [X]},
insert = AX. Aa:X. Ag:{List X,List X}. {(cons [X] a g.1),q.2},
remove =
AX. Aqg:{lList X,List X}.
let q' = case .2 of <nil=u> = {nil [X], reverse [X] g.1}
| <cons={h,t}> = g
in case q'.2 of
<nil=u> = none [{X,{List X,List X}}]
| <cons={h,t}> = some [{X,{List X,List X}}] {h,{g"'.1,t}}}} as QueueSig;
» queueADT : QueueSig

Properties

Type Equivalence and Reduction

Review: Parallel Reduction (S = T)

S$1=2Th S$2=2T S22 T
—— QR-REFL QR-ARROW QR-ABs
T=T S1—2S=>T—->T AX:K1.So = AXiKy. Ty

S1=2T S22 S12= T2 S$=2 T
QR-ApPp QR-APPABS
$1$92=2TT, (AX:K11.512) S2 = [X = T2ITy2

S2=21T QRALL S22 1
VX:K1.S = VXK. T {3IX2Kq, S0} = {IXeKq, To }

QR-SomE

PROPOSITION

e |fS=*Uand T =* Uforsome U, thenS = T. (Corollary of LEMMA 30.3.5)
e |fS =T, thenthereissome UsuchthatS =* Uand T =* U. (COROLLARY 30.3.11)

Preservation

The structural rule (T-EQ) makes induction proof difficult:
N=t:S S=T NETox
Fr=t:T

T-EQ
Preservation of Shapes (for Arrows)
IfS1 =S, =*T,thenT=T; — TowithS; =* Tyand Sy, =* Ts.

Inversion (for Arrows)
IfTHAx:S1.82:T; — To,thenT; = Sq7andT,x:S7F sy :Tr. AlsoT = Sq = x.

THEOREM (30.3.14)
Ifr-t:Tandt — t/, thenT Ft/: T.

Progress

Canonical Forms (for Arrows)

IFtisaclosedvaluewith @ -t : Ty — T, then tis an abstraction.

THEOREM (30.3.16)

Suppose tis a closed, well-typed term (thatis, @ - t : T forsome T). Then either tis a value or else there is some
t'witht — t’.

Decidability

The kinding relation is decidable, because kinding is a “simply-typed lambda-calculus” at the type level.
Suppose that we remove the one structural rule (T-EQ).
Example

'ty (AXzx. X — X) Nat ' t, :Nat
'ty t : Nat

T-App

We need to rewrite the type of t; to bring an arrow to the outside.

Solution

We can reduce the type of t7 to a normal form, e.g., (AXzx. X — X) Nat =* Nat — Nat.
Parallel reduction always normalizes for well-kinded types, by a similar argument for the normalization of
simply-typed lambda-calculus (Chapter12).

Decidability

Aside (Weak-Head Reduction)

Tl Swh T]/
—————— WH-APP WH-APPABS
T h=2whT (AXzK11.Ti2) T2 2wh X = T2]Th2

Weak-head reduction only reduces leftmost, outermost redexes and stops at a concrete constructor (e.g., arrows).

(AXz*. Id (X — X)) (IdNat)
=wh Id((IdNat) — (IdNat))
= (AY=x.Y) ((IdNat) — (IdNat))
=wh (IdNat) — (IdNat)

iéwh :

Decidability

Example

F'Et1:T = T2 'Ety: Ty
T-App
F'Etity: T2

We need to check the equivalence between T, and Ty 1.

Solution

We can again reduce both T, and T; 1 to their normal forms.
Forexample, T, =* Sy and Ty =* S, where S and S, are identical (modulo the names of bound variables).

Fragments of F

In System Fy, the only kind is x and no quantification (V) or abstraction (A) over types is permitted.
The remaining systems are defined with reference to a hierarchy of kinds at level i:

K1 =9
Kip1 ={x1JU{J=>K[J e Ki AK€ Kit1}
Ko =Ur<i K

Example

e System Fy is the simply-typed lambda-calculus A_,.

® |nSystem F,, we have X, = {x}, so there is no lambda-abstraction at the type level but we allow
quantification over proper types.

® F, isjustthe System F; this is why System Fis also called the second-order lambda-calculus.

® ForSystem F3, we have K3 = {*, * = *,* = x = *,...}, i.e,, type-level abstractions are over proper types.

Design Principles of
Programming Languages

Key Takeaways

PRINCIPLE

® The uses of type systems go far beyond their role in detecting errors.
® Type systems offer crucial support for programming: abstraction, safety, efficiency, ...
® Language design shall go hand-in-hand with type-system design.

’ Aw: Type Operators ‘ ’ AP: Dependent Types ‘

’ System F: Polymorphism }(—{ A, : Simply-Typed Lambda Calculus }—){ Extensions: Tuples, Sums, Lists, ... ‘

’ Apt: Recursive Types ‘ A—.: Subtyping ’ Effects: References, Exceptions, ... ‘

