
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang
赵海燕，王迪

Peking University, Spring Term 2023

Design Principles of Programming Languages, Spring 2023 1

Chap 30: Higher-Order Polymorphism

System Fω
Examples
Properties

Design Principles of Programming Languages, Spring 2023 2

We Have Studied …

λ→: Simply-Typed Lambda Calculus Extensions: Tuples, Sums, Lists, …

Effects: References, Exceptions, …λ<:: Subtypingλµ: Recursive Types

System F: Polymorphism

λω: Type Operators λP: Dependent Types

Remark
• Different combinations of features lead to different languages.
• Some combinations turn out to be very tricky!
• This chapter studies the combination of polymorphism and type operators.

Design Principles of Programming Languages, Spring 2023 3

Fω
The Combination of System F and λω

Design Principles of Programming Languages, Spring 2023 4

Syntax and Evaluation

Syntax

t ::= x | λx:T . t | t t | λX::K. t | t [T] | {*T , t} as T | let {X, x} = t in t
v ::= λx:T . t | λX::K. t | {*T , v} as T
T ::= X | T → T | ∀X::K. T | λX::K. T | T T | {∃X::K, T}
Γ ::= ∅ | Γ , x : T | Γ ,X :: K

K ::= ∗ | K ⇒ K

Evaluation

(λX::K11. t12) [T2] −→ [X 7→ T2]t12
E-TAPPTABS

Design Principles of Programming Languages, Spring 2023 5

Typing, Kinding, and Type Equivalence
Typing

Γ ,X :: K1 ` t2 : T2

Γ ` λX::K1. t2 : ∀X::K1. T2
T-TABS

Γ ` t1 : ∀X::K11. T12 Γ ` T2 :: K11

Γ ` t1 [T2] : [X 7→ T2]T12
T-TAPP

Γ ` t2 : [X 7→ U]T2 Γ ` {∃X::K1, T2} :: ∗
Γ ` {*U, t2} as {∃X::K1, T2} : {∃X::K1, T2}

T-PACK

Γ ` t1 : {∃X::K11, T12}
Γ ,X::K11, x : T12 ` t2 : T2

Γ ` let {X, x} = t1 in t2 : T2
T-UNPACK

Kinding and Type Equivalence

Γ ,X :: K1 ` T2 :: ∗
Γ ` ∀X::K1. T2 :: ∗

K-ALL
Γ ,X :: K1 ` T2 :: ∗

Γ ` {∃X::K1, T2} :: ∗
K-SOME

S2 ≡ T2

∀X::K1.S2 ≡ ∀X::K1. T2
Q-ALL

S2 ≡ T2

{∃X::K1,S2} ≡ {∃X::K1, T2}
Q-SOME

Design Principles of Programming Languages, Spring 2023 6

Examples

Design Principles of Programming Languages, Spring 2023 7

Review: Abstract Data Types (ADTs)
Definition
An abstract data type (ADT) consists of

• a type name A,
• a concrete representation type T,
• implementations of some operations for creating, querying, and manipulating values of type T, and
• an abstraction boundary enclosing the representation and operations.

counterADT =
{*Nat, {new = 1,

get = λ i:Nat. i,
inc = λ i:Nat. succ(i)}}

as {∃ Counter,
{new: Counter, get: Counter→Nat, inc: Counter→Counter}};

▶ counterADT : {∃ Counter,
{new:Counter,get:Counter→Nat,inc:Counter→Counter}}

Design Principles of Programming Languages, Spring 2023 8

Abstract Type Operators

Question
We want to implement an ADT of pairs.

• The ADT provides operations for building pairs and taking them apart.
• Those operations are polymorphic.

The abstract type Pair is not a proper type, but an abstract type operator!
PairSig = {∃ Pair :: *⇒*⇒ *,

{pair: ∀ X. ∀ Y. X→Y→(Pair X Y),
fst: ∀ X. ∀ Y. (Pair X Y)→X,
snd: ∀ X. ∀ Y. (Pair X Y)→Y}};

Design Principles of Programming Languages, Spring 2023 9

Abstract Type Operators

Example
pairADT = {*λ X. λ Y. ∀ R. (X→Y→R) → R,

{pair = λ X. λ Y. λ x:X. λ y:Y. λ R. λ p:X→Y→R. p x y,
fst = λ X. λ Y. λ p: ∀ R. (X→Y→R) → R. p [X] (λ x:X. λ y:Y. x),
snd = λ X. λ Y. λ p: ∀ R. (X→Y→R) → R. p [Y] (λ x:X. λ y:Y. y)}}

as PairSig;
▶ pairADT : PairSig

let {Pair,pair} = pairADT
in pair.fst [Nat] [Bool] (pair.pair [Nat] [Bool] 5 true);
▶ 5 : Nat

Design Principles of Programming Languages, Spring 2023 10

More Examples

Option: Combination with Variants
Option = λ X. <none:Unit,some:X>;
none = λ X. <none=unit> as (Option X);
▶ none : ∀ X. (Option X)
some = λ X. λ x:X. <some=x> as (Option X);
▶ some : ∀ X. X → (Option X)

List: Combination with Variants, Tuples, and Recursive Types
List = µ(L :: X⇒ X). λ X. <nil:Unit,cons:{X,(L X)}>;
nil = λ X. <nil=unit> as (List X);
▶ nil : ∀ X. (List X)
cons = λ X. λ h:X. λ t:(List X). <cons={h,t}> as (List X);
▶ cons : ∀ X. X → (List X) → (List X)

Design Principles of Programming Languages, Spring 2023 11

More Examples
Queue: Implementing a Queue using Two Lists
QueueSig = {∃ Q :: *⇒ *,

{empty: ∀ X. (Q X),
insert: ∀ X. X → (Q X) → (Q X),
remove: ∀ X. (Q X) → Option {X,(Q X)}}};

queueADT = {*λ X. {List X,List X},
{empty = λ X. {nil [X],nil [X]},
insert = λ X. λ a:X. λ q:{List X,List X}. {(cons [X] a q.1),q.2},
remove =
λ X. λ q:{List X,List X}.
let q' = case q.2 of <nil=u> ⇒ {nil [X], reverse [X] q.1}

| <cons={h,t}> ⇒ q
in case q'.2 of
<nil=u> ⇒ none [{X,{List X,List X}}]

| <cons={h,t}> ⇒ some [{X,{List X,List X}}] {h,{q'.1,t}}}} as QueueSig;
▶ queueADT : QueueSig

Design Principles of Programming Languages, Spring 2023 12

Properties

Design Principles of Programming Languages, Spring 2023 13

Type Equivalence and Reduction
Review: Parallel Reduction (S ⇛ T)

T ⇛ T
QR-REFL

S1 ⇛ T1 S2 ⇛ T2

S1 → S2 ⇛ T1 → T2
QR-ARROW

S2 ⇛ T2

λX::K1.S2 ⇛ λX::K1. T2
QR-ABS

S1 ⇛ T1 S2 ⇛ T2

S1 S2 ⇛ T1 T2
QR-APP

S12 ⇛ T12 S2 ⇛ T2

(λX::K11.S12) S2 ⇛ [X 7→ T2]T12
QR-APPABS

S2 ⇛ T2

∀X::K1.S2 ⇛ ∀X::K1. T2
QR-ALL

S2 ⇛ T2

{∃X::K1,S2} ⇛ {∃X::K1, T2}
QR-SOME

PROPOSITION
• If S ⇛∗ U and T ⇛∗ U for some U, then S ≡ T . (Corollary of LEMMA 30.3.5)
• If S ≡ T , then there is some U such that S ⇛∗ U and T ⇛∗ U. (COROLLARY 30.3.11)

Design Principles of Programming Languages, Spring 2023 14

Preservation
Observation
The structural rule (T-EQ) makes induction proof difficult:

Γ ` t : S S ≡ T Γ ` T :: ∗
Γ ` t : T

T-EQ

Preservation of Shapes (for Arrows)
If S1 → S2 ⇛∗ T , then T = T1 → T2 with S1 ⇛∗ T1 and S2 ⇛∗ T2.

Inversion (for Arrows)
If Γ ` λx:S1. s2 : T1 → T2, then T1 ≡ S1 and Γ , x : S1 ` s2 : T2. Also Γ ` S1 :: ∗.

THEOREM (30.3.14)
If Γ ` t : T and t −→ t ′, then Γ ` t ′ : T .
Design Principles of Programming Languages, Spring 2023 15

Progress

Canonical Forms (for Arrows)
IF t is a closed value with ∅ ` t : T1 → T2, then t is an abstraction.

THEOREM (30.3.16)
Suppose t is a closed, well-typed term (that is, ∅ ` t : T for some T). Then either t is a value or else there is some
t ′ with t −→ t ′.

Design Principles of Programming Languages, Spring 2023 16

Decidability
Observation
The kinding relation is decidable, because kinding is a “simply-typed lambda-calculus” at the type level.

Suppose that we remove the one structural rule (T-EQ).

Example

Γ ` t1 : (λX::∗.X → X) Nat Γ ` t2 : Nat
Γ ` t1 t2 : Nat T-APP

We need to rewrite the type of t1 to bring an arrow to the outside.

Solution
We can reduce the type of t1 to a normal form, e.g., (λX::∗.X → X) Nat ⇛∗ Nat → Nat.
Parallel reduction always normalizes for well-kinded types, by a similar argument for the normalization of
simply-typed lambda-calculus (Chapter 12).
Design Principles of Programming Languages, Spring 2023 17

Decidability

Aside (Weak-Head Reduction)

T1 ⇛wh T ′
1

T1 T2 ⇛wh T ′
1 T2

WH-APP
(λX::K11. T12) T2 ⇛wh [X 7→ T2]T12

WH-APPABS

Weak-head reduction only reduces leftmost, outermost redexes and stops at a concrete constructor (e.g., arrows).

(λX::∗. Id (X → X)) (Id Nat)
⇛wh Id ((Id Nat) → (Id Nat))

= (λY::∗. Y) ((Id Nat) → (Id Nat))
⇛wh (Id Nat) → (Id Nat)
/⇛wh .

Design Principles of Programming Languages, Spring 2023 18

Decidability

Example

Γ ` t1 : T11 → T12 Γ ` t2 : T2

Γ ` t1 t2 : T12
T-APP

We need to check the equivalence between T2 and T11.

Solution
We can again reduce both T2 and T11 to their normal forms.
For example, T2 ⇛∗ S1 and T11 ⇛∗ S2 where S1 and S2 are identical (modulo the names of bound variables).

Design Principles of Programming Languages, Spring 2023 19

Fragments of Fω
Definition
In System F1, the only kind is ∗ and no quantification (∀) or abstraction (λ) over types is permitted.
The remaining systems are defined with reference to a hierarchy of kinds at level i:

K1 = ∅
Ki+1 = {∗}∪ {J ⇒ K | J ∈ Ki ∧K ∈ Ki+1}

Kω =
∪

1⩽iKi

Example

• System F1 is the simply-typed lambda-calculus λ→.
• In System F2, we have K2 = {∗}, so there is no lambda-abstraction at the type level but we allow

quantification over proper types.
• F2 is just the System F; this is why System F is also called the second-order lambda-calculus.

• For System F3, we have K3 = {∗, ∗ ⇒ ∗, ∗ ⇒ ∗ ⇒ ∗, . . .}, i.e., type-level abstractions are over proper types.

Design Principles of Programming Languages, Spring 2023 20

Design Principles of
Programming Languages

Design Principles of Programming Languages, Spring 2023 21

Key Takeaways

PRINCIPLE
• The uses of type systems go far beyond their role in detecting errors.
• Type systems offer crucial support for programming: abstraction, safety, efficiency, …
• Language design shall go hand-in-hand with type-system design.

λ→: Simply-Typed Lambda Calculus Extensions: Tuples, Sums, Lists, …

Effects: References, Exceptions, …λ<:: Subtypingλµ: Recursive Types

System F: Polymorphism

λω: Type Operators λP: Dependent Types

Design Principles of Programming Languages, Spring 2023 22

