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𝛌→

Assume:  all variables in Γ are different 
via renaming/internal  
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Chapter 11: 
Simply Extensions

Basic Types / The Unit Type
Derived Forms: Sequencing and Wildcard

Ascription / Let Binding
Pairs / Tuples/Records

Sums / Variants
General Recursion / Lists 



Base Types
• Up to now, we’ve formulated “base types” (e.g. Nat) by adding them to the syntax

of types, extending the syntax of terms with associated constants (zero) and
operators (succ, etc.) and adding appropriate typing and evaluation rules.

• We can do this for as many base types as we like.
• For more theoretical discussions (as opposed to programming) we can often

ignore the term-level inhabitants of base types, and just treat these types as
uninterpreted constants.
− E.g., suppose B and C are some base types. Then we can ask (without

knowing anything more about B or C) whether there are any types S and T
such that the term

(λf: S. λg: T. f g) (λx: B. x)
is well typed.
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Base Types
• Base types in every programming language
─ sets of simple, unstructured values such as numbers, Booleans, or 

characters, and 
─ primitive operations for manipulating these values. 

• Theoretically, our language is equipped with some uninterpreted
base (atomic) types, with no primitive operations on them at all.

Using A, B, C, … both as the names of base types and metavariables ranging
over base types, relying on context to tell us which is intended in a
particular instance.
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Base Types
• Identity function
λx:A. x;
<fun>: A → A 

λx:B. x; 
<fun>: B → B 

• Function repeating  the behavior of function f on argument x two times
λf: A → A. λx: A. f (f(x))
<fun>: (A → A) → A → A
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The Unit Type
• It is the singleton type (like void in C).

• Application: Unit-type expressions care more about “side effects”  
rather than “results”.
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Derived Form: Sequencing t1; t2
• A direct extension λE

─ t ::=  …
t1;  t2

─ New evaluation relation rules

─ New typing rules
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Derived Form: Sequencing t1 ; t2
• Derived form (λI): syntactic sugar

• Theorem [Sequencing is a derived form]:
Let e ∈ 𝜆! → 𝜆"

be the elaboration function (desugaring) that translates from the
external to the internal language by replacing every
occurrence of t1; t2 with (λx: Unit. t2) t1.
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Derived Form: Wildcard
• A derived form

λ_: S. t ⟶ λx: S. t
where x is some variable not occurring in t.

• Useful in writing a “dummy” lambda abstraction in which the
parameter variable is not actually used in the body of the abstraction.
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Ascription
• t as T
─ the ability to explicitly ascribe a particular type to a given term
─ checking if the term t has the type T,  useful for 

l documentation and pinpointing error sources
l controlling type printing
l specializing types (after learning subtyping)
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Ascription

verification

New syntactic forms

New evaluation rules

New typing rules

Ascription as a derived form
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Let Bindings
• To give names to some of its subexpressions. 

New syntactic forms

New evaluation rules

New typing rules
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Let Bindings
• Is “let binding” a derived form?

Yes?    let x = t1 in t2 ⟶ (λx:T1. t2) t1
• Desugaring is not on terms but on typing derivations
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Pairs, tuples, and records
- Compound data structures -



Pairs
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Evaluation rules for pairs
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Evaluation rules for pairs
• examples
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Typing rules for pairs
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Tuples
• Generalization: binary è n-ary products
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Records
• Generalization: n-ary products è labeled records

Question:  {partno=5524, cost=30.27} = {cost=30.27, partno=5524}? 
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Sums and variants



Sums
• To deal with heterogeneous collections of values.
• e.g., Address books

─ Injection by tagging (disjoint unions)

─ Processing by case analysis
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Sums
• To deal with heterogeneous collections of values. 

New syntactic forms

T1+T2 is a disjoint union of T1 and T2 (the tags inl and inr ensure disjointness)
Design Principles of Programming Language, Spring 2023 24



Sums
New evaluation rules
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Sums (with Unique Typing)
New typing rules
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Sums and Uniqueness of Types
• Problem 

If t has type T, then inl t has type T + U for every U.
the uniqueness of types is broken, a lot of U.

• Possible solutions
─ “Infer” U as needed during typechecking
─ Give constructors different names and only allow each name to appear in one 

sum type (requires generalization to “variants”) — OCaml’s solution

─ Annotate each inl and inr with the intended sum type (Figure 11-10) 

Design Principles of Programming Language, Spring 2023 27



Variants
• Generalization:   Sums è Labeled variants
─ T1 + T2 è <l1:T1, l2:T2>
─ inl t as T1 + T2 è < l1  = t > as  <l1:T1, l2:T2>

• Example:
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Variants
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Special Instances of Variants
• Options

OptionalNat = <none: Unit, some: Nat>; 

• Enumerations
Weekday = <monday: Unit, tuesday: Unit, wednesday: Unit, 

thursday:Unit, friday: Unit>; 

• Single-Field Variants
V = <l: T>

― Operations on T cannot be applied to elements of V without first unpackaging 
them: a V cannot be accidentally mistaken for a T
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Recursion 



Recursions in 𝝀→
• In simply typed lambda-calculus 𝝀→,  all programs terminate. 
• Hence, untyped terms like omega and fix are not typable.
• We can extend the system with a (typed) fixed-point operator...
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Example

ff : (Nat → Bool) → Nat → Bool
iseven Nat → Bool
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• What types for ff and iseven ?



General Recursions
• Introduce “fix” operator :  fix f = f (fix f)

― It cannot be defined as a derived form in simply typed lambda calculus

New syntactic forms

New evaluation rules
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General Recursions
New typing rules
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General Recursions
• Another example:
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General Recursions
• One more example: Given any type T, can you define a term that has 

type T?

x as T

fix (λx:T. x)
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General Recursions
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• A convenient form



Lists
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Homework J

• Read Chapter 11.
• Do Exercise 11.5.2  & 11.12.1
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