

编程语言的设计原理 Design Principles of Programming Languages

Haiyan Zhao, Di Wang

赵海燕,王迪

Peking University, Spring Term 2023

Chapter 13: Reference

Why reference Evaluation Typing Store Typings Safety

Why & What References

Also known as *side effects*.

A *function* or *expression* is said to have a **side effect** if, in addition to returning a value, it also *modifies some state* or has an *observable interaction with* calling functions or the outside world.

- modify a *global variable* or *static variable*, modify *one of its arguments*,
- raise an exception,
- write data to a display or file, read data, or
- call other *side-effecting functions*.

In the presence of side effects, a program's behavior may depend on *history*; i.e., the *order of evaluation* matters.

Side effects are the *most common way* that a program *interacts with the outside world* (*people*, *file systems*, *other computers on networks*). The degree to which side effects are used depends on the *programming paradigm*.

- Imperative programming is known for its frequent utilization of side effects.
- In *functional programming*, side effects are rarely used.
 - Functional languages like *Standard ML*, *Scheme* and *Scala* do not restrict side effects, but it is customary for programmers to avoid them.
 - The functional language *Haskell* expresses side effects such as I/O and other stateful computations using *monadic* actions.

So far, what we have discussed does not yet include side effects.

- In particular, whenever we defined function, we *never changed variables or data*. Rather, we always computed *new data*.
 - E.g., the operations to *insert an item* into the data structure *didn't effect the old copy* of the data structure. Instead, we *always built a new data structure* with the item appropriately inserted.

For the most part, programming in a functional style (i.e., *without side effects*) is a "good thing" because it's *easier to reason locally about the behavior* of the program.

Writing values into memory locations is the **fundamental mechanism** of imperative languages such as C/C++.

Mutable structures are

- required to implement many efficient algorithms.
- also very convenient to represent the *current state of a state* machine.

Mutability

In most programming languages, *variables are mutable* — i.e., a variable provides both

- a name that refers to a previously calculated value, and
- the possibility of overwriting this value with another (which will be referred to by the same name)

In some languages (e.g., OCaml), these features are separate:

- variables are only for naming the binding between a variable and its value is immutable
- introduce a new class of mutable values (called reference cells or references)
 - at any given moment, a reference holds a value (and can be dereferenced to obtain this value)
 - *a new value* may be assigned to a reference

#let r = ref 5

val r : int ref = $\{\text{contents} = 5\}$

// The value of r is a reference to a cell that always contain a number.

- # r:= !r +3
- # !r
- -: int = 8

(r:=succ(!r); !r)

Basic Examples

- # let flag = ref true;;
- -val flag: bool ref = {contents = true}
- # if !flag then 1 else 2;;
- -: int = 1

Reference

Basic operations

- allocation ref (operator)
- dereferencing
- assignment :=

Is there any difference between the expressions of ?

- 5 + 3;
- r: = 8;
- (r:=succ(!r); !r)
- (r:=succ(!r); (r:=succ(!r); (r:=succ(!r); !r)

sequencing

Reference

Exercise 13.1.1 :

Draw a similar diagram showing the effects of evaluating the expressions

 $a = \{ref 0, ref 0\}$ and

 $b = (\lambda x: Ref Nat. \{x, x\}) (ref 0)$

A value of type ref T is a *pointer* to a cell holding a value of type T

5

If this value is "copied" by assigning it to another variable: s = r;

the cell pointed to is not copied. (*r* and s are *aliases*)

$$r = \sqrt{\begin{array}{c} s \\ 5 \end{array}}$$

We can change **r** by assigning to **s**:

Reference cells are *not the only language feature* that introduces the possibility of aliasing

- arrays
- communication channels
- I/O devices (disks, etc.)

The difficulties of aliasing

- The possibility of aliasing *invalidates* all sorts of useful forms of reasoning about programs, both by programmers:
 - e.g., $\lambda r: Ref Nat. \lambda s: Ref Nat. (r \coloneqq 2; s \coloneqq 3; !r)$

always returns 2 unless r and s are aliases

and by compilers :

Code motion out of loops, common sub-expression elimination, allocation of variables to registers, and detection of uninitialized variables all depend upon the compiler knowing which objects a load or a store operation could reference.

 High-performance compilers spend significant energy on alias analysis to try to establish when different variables cannot possibly refer to the same storage

Design Principles of Programming Languages, Spring 2023

The *problems of aliasing* have led some language designers simply to disallow it (e.g., Haskell).

However, there are good reasons why most languages do provide constructs involving aliasing:

- efficiency (e.g., arrays)
- shared resources (e.g., locks) in concurrent systems
- "action at a distance" (e.g., symbol tables)

Example

c = ref 0incc = λx : Unit. ($c \coloneqq succ(!c)$; !c) decc = λx : Unit. ($c \coloneqq pred(!c)$; !c) incc unit decc unit

 $o = \{i = incc, d = decc\}$

```
let newcounter = o

\lambda_{.Unit} \cdot

let c = ref 0 in

let incc = \lambda x: Unit. (c \coloneqq succ(!c); !c) in

let decc = \lambda x: Unit. (c \coloneqq pred(!c); !c)

let o = \{i = incc, d = decc\} in

0
```

Example

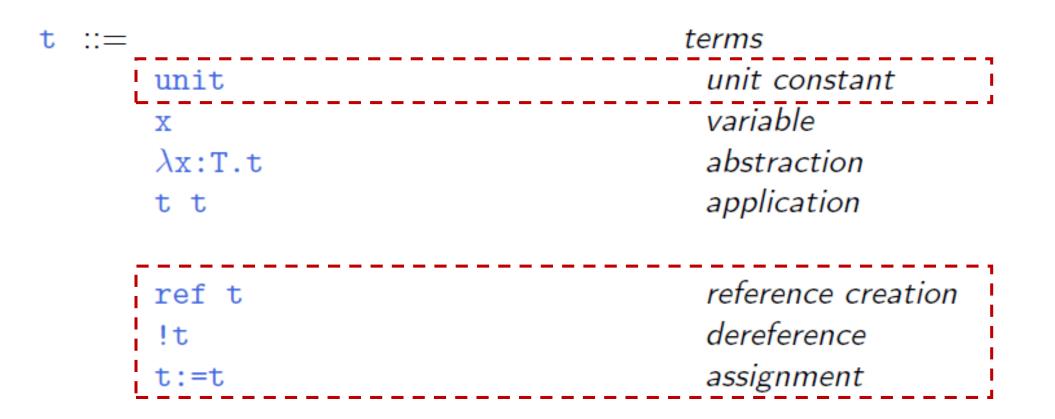
• Reference values of any type, including functions.

```
NatArray = Ref (Nat \rightarrow Nat);
newarray = \lambda_{\perp}:Unit. ref (\lambdan:Nat.0);
             : Unit \rightarrow NatArray
lookup = \lambdaa:NatArray. \lambdan:Nat. (!a) n;
          : NatArray \rightarrow Nat \rightarrow Nat
update = \lambdaa:NatArray. \lambdam:Nat. \lambdav:Nat.
                let oldf = !a in
                a := (\lambda n: Nat. if equal m n then v else oldf n);
          : NatArray \rightarrow Nat \rightarrow Nat \rightarrow Unit
```


How to enrich the language with the new mechanism?

Design Principles of Programming Languages, Spring 2023

... plus other familiar types, in examples



Typing rules

$$\frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash ref \ t_1 : Ref \ T_1}$$
(T-REF)
$$\frac{\Gamma \vdash t_1 : Ref \ T_1}{\Gamma \vdash !t_1 : T_1}$$
(T-DEREF)
$$\frac{\vdash t_1 : Ref \ T_1 \qquad \Gamma \vdash t_2 : T_1}{\Gamma \vdash t_1 : = t_2 : Unit}$$
(T-ASSIGN)

type system

 a set of rules that assigns a property called type to the various "constructs" of a computer program, such as

- variables, expressions, functions or modules

What is the value of the expression ref 0?

```
Is

r = ref 0

s = ref 0

and

r = ref 0

s = r
```

behave the same?

Crucial observation: evaluating ref 0 must *do* something ?

Specifically, evaluating ref 0 should *allocate some storage* and yield a *reference* (or *pointer*) to that storage

```
So what is a reference?
```


A reference names a *location* in the *store* (also known as the *heap* or just the *memory*)

What is the **store**?

- Concretely: an array of 8-bit bytes, indexed by 32/64-bit integers
- More abstractly: an array of values, abstracting away from the different sizes of the runtime representations of different values
- Even more abstractly: a partial function from locations to values
 - set of store locations
 - Location : an abstract index into the store

Locations

Syntax of *values*:

v ::=	values
unit	unit constant
$\lambda \mathtt{x:T.t}$	abstraction value
	store location

... and since all *values* are *terms* ...

t	::=		terms
		unit	unit constant
		x	variable
		$\lambda \texttt{x:T.t}$	abstraction
		t t	application
		ref t	reference creation
		!t	dereference
		t:=t	assignment
		1	store location

Does this mean we are going to allow programmers to *write explicit locations* in their programs??

No: This is just a modeling trick, just as intermediate results of evaluation

 Enriching the "source language" to include some *runtime structures*, we can thus continue to *formalize evaluation* as a relation between source terms

Aside: If we formalize evaluation in the *big-step style*, then we can *add locations* to *the set of values* (results of evaluation) without adding them to the set of terms

The *result* of *evaluating a term* now (with references)

- depends on the store in which it is evaluated
- is not just a value we must also keep track of the changes that get made to the store
- i.e., the evaluation relation should now map *a term* as *well* as *a store* to *a reduced term* and *a new store*

$$\mathbf{t} \mid \boldsymbol{\mu} \rightarrow \mathbf{t}' \mid \boldsymbol{\mu}'$$

To use the metavariable μ to *range over stores*

 $\mu \& \mu'$: states of the store before & after evaluation

A term of the form ref t_1

1. first evaluates inside t_1 until it becomes a value ...

$$\frac{\mathtt{t}_1 \mid \mu \longrightarrow \mathtt{t}'_1 \mid \mu'}{\texttt{ref } \mathtt{t}_1 \mid \mu \longrightarrow \texttt{ref } \mathtt{t}'_1 \mid \mu'} \qquad (E-\text{ReF})$$

2. then *chooses* (allocates) a *fresh location* l, *augments* the store with *a binding* from l to v_1 , and returns l:

$$\frac{I \notin dom(\mu)}{\operatorname{ref} v_1 \mid \mu \longrightarrow I \mid (\mu, I \mapsto v_1)}$$
(E-REFV

A term $!t_1$ first evaluates in t_1 until it becomes a value...

$$\frac{\mathtt{t}_1 \mid \mu \longrightarrow \mathtt{t}'_1 \mid \mu'}{\mathtt{!t}_1 \mid \mu \longrightarrow \mathtt{!t}'_1 \mid \mu'} \qquad (\text{E-DEREF})$$

... and then

- *1. looks up this value* (which **must be** a *location*, if the original term was well typed) and
- 2. returns its contents in the current store

$$\frac{\mu(l) = \mathtt{v}}{! \, l \mid \mu \longrightarrow \mathtt{v} \mid \mu}$$

An assignment $t_1 \coloneqq t_2$ first evaluates t_1 and t_2 until they become values ...

$$\frac{\mathtt{t}_1 \mid \mu \longrightarrow \mathtt{t}'_1 \mid \mu'}{\mathtt{t}_1 := \mathtt{t}_2 \mid \mu \longrightarrow \mathtt{t}'_1 := \mathtt{t}_2 \mid \mu'} \quad (\text{E-Assign1})$$

$$\frac{\mathbf{t}_2 \mid \mu \longrightarrow \mathbf{t}'_2 \mid \mu'}{\mathbf{v}_1 := \mathbf{t}_2 \mid \mu \longrightarrow \mathbf{v}_1 := \mathbf{t}'_2 \mid \mu'} \qquad (\text{E-Assign2})$$

... and then returns unit and updates the store:

$$I := v_2 \mid \mu \longrightarrow \text{unit} \mid [I \mapsto v_2] \mu \qquad (\text{E-Assign})$$

Evaluation rules for *function abstraction* and *application* are *augmented with stores*, but *don't do anything* with them directly

$$\begin{aligned} \frac{\mathbf{t}_{1} \mid \mu \longrightarrow \mathbf{t}_{1}' \mid \mu'}{\mathbf{t}_{1} \mid \mathbf{t}_{2} \mid \mu \longrightarrow \mathbf{t}_{1}' \mid \mathbf{t}_{2} \mid \mu'} & (\text{E-APP1}) \\ \frac{\mathbf{t}_{2} \mid \mu \longrightarrow \mathbf{t}_{2}' \mid \mu'}{\mathbf{v}_{1} \mid \mathbf{t}_{2} \mid \mu \longrightarrow \mathbf{v}_{1} \mid \mathbf{t}_{2}' \mid \mu'} & (\text{E-APP2}) \\ (\lambda \mathbf{x}: \mathbf{T}_{11}. \mathbf{t}_{12}) \mid \mathbf{v}_{2} \mid \mu \longrightarrow [\mathbf{x} \mapsto \mathbf{v}_{2}] \mathbf{t}_{12} \mid \mu \text{ (E-APPABS}) \end{aligned}$$

Garbage Collection

Note that we are not modeling *garbage collection* — the store just *grows without bound*

It may not be problematic for most *theoretical purposes*, whereas it is clear that for *practical purposes* some form of *deallocation* of unused storage must be provided

Pointer Arithmetic

p++;

Store Typing

Typing Locations

Question: What is the *type* of a location?

Answer: Depends on the *contents* of the store!

e.g,

- in the store $(l_1 \mapsto \text{unit}, l_2 \mapsto \text{unit})$, the term $! l_2$ is evaluated to unit, having type Unit
- in the store $(l_1 \mapsto \text{unit}, l_2 \mapsto \lambda x: \text{Unit. } x)$, the term $! l_2$ has type Unit \rightarrow Unit

Roughly, to find the type of a location l, first *look up* the current contents of l in the store, and calculate the type T_1 of the contents:

 $\frac{\Gamma \vdash \mu(I) : \mathtt{T}_1}{\Gamma \vdash I : \mathtt{Ref } \mathtt{T}_1}$

More precisely, to make *the type of a term depend on the store* (keeping a consistent state), we should change the *typing relation* from *three-place* to : $\Gamma \mid \mu \vdash \mu(I) : T_1$

 $\mathsf{\Gamma} \mid \mu \vdash \mathsf{I} : \texttt{Ref } \mathsf{T}_1$

i.e., typing is now a *four-place relation* (about *contexts*, *stores*, *terms*, and *types*), though *the store is a part of the context*

Problems #1

However, this rule is not completely satisfactory, and is rather inefficient.

- it can make typing derivations very large (if a location appears many times in a term) !
- e.g.,

$$\mu = (l_1 \mapsto \lambda x: \text{Nat. 999}, \\ l_2 \mapsto \lambda x: \text{Nat. } (! \ l_1) \times, \\ l_3 \mapsto \lambda x: \text{Nat. } (! \ l_2) \times, \\ l_4 \mapsto \lambda x: \text{Nat. } (! \ l_3) \times, \\ l_5 \mapsto \lambda x: \text{Nat. } (! \ l_4) \times),$$

then how big is the typing derivation for l_5 ?

Problems #2

But wait... it gets worse if the store contains a cycle. Suppose

$$\begin{split} \mu &= (l_1 \mapsto \lambda x: \text{Nat. } (! \, l_2) \times, \\ l_2 &\mapsto \lambda x: \text{Nat. } (! \, l_1) \times)), \end{split}$$

how big is the typing derivation for l_2 ? Calculating a type for l_2 requires finding the type of l_1 , which in turn involves l_2

What leads to the problems?

Our typing rule for locations requires us to *recalculate the type of a location every time it's* mentioned in a term, which *should not be necessary*

In fact, once a location is first created, *the type of the initial value* is **known**, and *the type will be kept* even if the values can be changed

Observation:

The typing rules we have chosen for references guarantee *that a given location* in the store is *always* used to hold *values of the same type*

These intended types can be *collected* into a *store typing:*

— a *partial function* from *locations* to *types*

Store Typing

E.g., for

$$\mu = (l_1 \mapsto \lambda x: \text{Nat. 999}, \\ l_2 \mapsto \lambda x: \text{Nat. } (! \ l_1) \times, \\ l_3 \mapsto \lambda x: \text{Nat. } (! \ l_2) \times, \\ l_4 \mapsto \lambda x: \text{Nat. } (! \ l_3) \times, \\ l_5 \mapsto \lambda x: \text{Nat. } (! \ l_4) \times),$$

A reasonable store typing would be

$$\Sigma = (I_1 \mapsto \texttt{Nat} o \texttt{Nat}, \ I_2 \mapsto \texttt{Nat} o \texttt{Nat}, \ I_3 \mapsto \texttt{Nat} o \texttt{Nat}, \ I_4 \mapsto \texttt{Nat} o \texttt{Nat}, \ I_5 \mapsto \texttt{Nat} o \texttt{Nat})$$

Store Typing

Now, suppose we are given a store typing Σ describing the store μ in which we intend to evaluate some term t.

Then we can use Σ to look up the *types of locations* in t instead of calculating them from the values in μ

$$\frac{\Sigma(I) = T_1}{\mid \Sigma \vdash I : \text{Ref } T_1}$$
(T-Loc)

i.e., *typing* is now a *four-place relation on* contexts, *store typings*, terms, and types.

Proviso: the typing rules *accurately predict* the results of evaluation *only if* the *concrete store* used during evaluation actually *conforms to* the store typing.

$$\frac{\Sigma(l) = T_{1}}{\Gamma \mid \Sigma \vdash l : \operatorname{Ref} T_{1}}$$
(T-Loc)
$$\frac{\Gamma \mid \Sigma \vdash t_{1} : T_{1}}{\Gamma \mid \Sigma \vdash \operatorname{ref} t_{1} : \operatorname{Ref} T_{1}}$$
(T-REF)
$$\frac{\Gamma \mid \Sigma \vdash t_{1} : \operatorname{Ref} T_{11}}{\Gamma \mid \Sigma \vdash t_{1} : T_{11}}$$
(T-DEREF)
$$\frac{\Gamma \mid \Sigma \vdash t_{1} : \operatorname{Ref} T_{11}}{\Gamma \mid \Sigma \vdash t_{1} : T_{11}}$$
(T-Assign)

Γ

Store Typing

Where do these store typings come from?

When we first typecheck a program, there will be *no explicit locations*, so we can use *an empty store typing*, since the locations arise only in terms that are *the intermediate results* of evaluation

So, when a new location is created during evaluation,

$$\frac{I \notin \operatorname{dom}(\mu)}{\operatorname{ref} v_1 \mid \mu \longrightarrow I \mid (\mu, I \mapsto v_1)} \qquad (\text{E-ReFV}$$

we can observe the type of v_1 and *extend* the "*current store typing*" appropriately.

Store Typing

As evaluation proceeds and *new locations are created*, *the store typing is extended* by looking at the type of the initial values being placed in newly allocated cells

∑ only records the association between already-allocated storage cells and their types

Coherence between the statics and the dynamics

Well-formed programs are wellbehaved when executed

the steps of evaluation preserve typing

How to express the statement of preservation? *First attempt*: just add *stores* and *store typings* in the appropriate places

Theorem(?): if
$$\Gamma \mid \Sigma \vdash t: T$$
 and $t \mid \mu \longrightarrow t' \mid \mu'$,
then $\Gamma \mid \Sigma \vdash t': T$

Right??

Wrong! Why?

Because Σ and μ here are not constrained to have anything to do with each other!

Exercise: Construct an example that breaks this statement of preservation

Definition: A store μ is said to be *well typed* with respect to a typing context Γ and a store typing Σ , written $\Gamma \mid \Sigma \vdash \mu$, if $dom(\mu) = dom(\Sigma)$ and $\Gamma \mid \Sigma \vdash \mu(l)$: $\Sigma(l)$ for every $l \in dom(\mu)$

```
Theorem (?): if

\Gamma \mid \Sigma \vdash t: T
t \mid \mu \longrightarrow t' \mid \mu'
\Gamma \mid \Sigma \vdash \mu
then \Gamma \mid \Sigma \vdash t': T
```

Right this time? Still wrong ! Why? Where? (E-REFV) 13.5.2

Creation of a *new reference cell* ...

 $\frac{l \notin dom(\mu)}{\operatorname{ref} v_1 \mid \mu \longrightarrow l \mid (\mu, l \mapsto v_1)}$

(E-REFV)

... breaks the correspondence between the store typing and the store. Since the store can grow during evaluation:

Creation of a new reference cell yields a store with a *larger domain* than the initial one, making the conclusion *incorrect*: if μ' includes a binding for *a fresh location l*, then *l* cann't be in the domain of Σ , and it will not be the case that t' is typable under Σ

Theorem: if $\Gamma \mid \Sigma \vdash t: T$ $\Gamma \mid \Sigma \vdash \mu$

 $t \mid \mu \rightarrow t' \mid \mu'$

then, for *some* $\Sigma' \supseteq \Sigma$, $\Gamma \mid \Sigma' \vdash t': T$ $\Gamma \mid \Sigma' \vdash \mu'$.

A correct version. What is Σ' ?

Proof: Easy extension of the preservation proof for λ_{\rightarrow}

Progress

well-typed expressions are either values or can be further evaluated

Theorem:

Suppose t is a closed, well-typed term

(i.e., $\Gamma \mid \Sigma \vdash t: T$ for some T and Σ)

then either t is a *value* or else, for any store μ such that $\Gamma \mid \Sigma \vdash \mu$, there is some term t' and store μ' with

 $t \mid \mu \rightarrow t' \mid \mu'$

- preservation and progress together constitute the proof of safety
 - progress theorem ensures that well-typed expressions don't get stuck in an ill-defined state, and
 - preservation theorem ensures that if a step is a taken the result remains well-typed (*with the same type*).
- These two parts ensure the *statics and dynamics* are coherent, and that no ill-defined states can ever be encountered while evaluating a well-typed expression

In summary ...

Syntax

t

We added to λ_{\rightarrow} (with Unit) syntactic forms for *creating*, *dereferencing*, and *assigning* reference cells, plus a new type constructor Ref.

::=	terms
unit	unit constant
x	variable
$\lambda x: T.t$	abstraction
t t	application
ref t	reference creation
!t	dereference
t:=t	assignment
	store location

Evaluation

Evaluation relation: $t \mid \mu \rightarrow t' \mid \mu'$

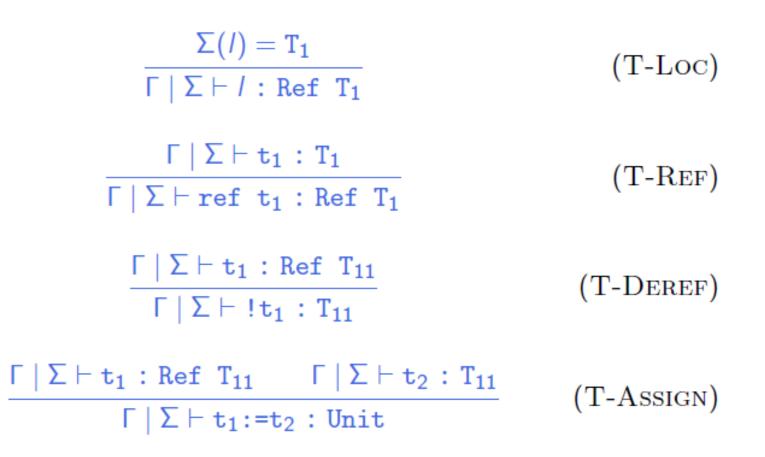
$$\frac{l \notin dom(\mu)}{\operatorname{ref} v_1 \mid \mu \longrightarrow l \mid (\mu, l \mapsto v_1)} \quad (E-\operatorname{ReFV})$$

$$\frac{\mu(l) = v}{|l \mid \mu \longrightarrow v \mid \mu} \quad (E-\operatorname{DEREFLOC})$$

$$l:=v_2 \mid \mu \longrightarrow \operatorname{unit} \mid [l \mapsto v_2]\mu \quad (E-\operatorname{Assign})$$

Typing

Typing becomes a *four-place* relation: $\Gamma \mid \Sigma \vdash t : T$



Theorem: if

- $\Gamma \mid \Sigma \vdash t:T$
- $\Gamma \mid \Sigma \vdash \mu$
- $t \mid \mu \rightarrow t' \mid \mu'$

then, for some $\Sigma' \supseteq \Sigma$,

 $\Gamma \mid \Sigma' \vdash t': T$ $\Gamma \mid \Sigma' \vdash \mu'.$

Progress

Theorem: Suppose t is a closed, well-typed term (that is,

 $\emptyset \mid \Sigma \vdash t: T$ for some T and Σ). Then either t is a value or else, for any store μ such that $\emptyset \mid \Sigma \vdash \mu$, there is some term t' and store μ' with t $\mid \mu \longrightarrow t' \mid \mu'$

Others ...

Fix-sized vectors of values. All of the values must have the *same type*, and the fields in the array can be accessed and modified.

e.g., arrays can be created with in Ocaml $[|e_1; ...; e_n|]$

```
# let a = [|1;3;5;7;9|];;
val a : int array = [|1;3;5;7;9|]
#a;;
```

-: int array = [|1;3;5;7;9|]

Arrays


```
let f a =
 for i = 1 to Array.length a - 1 do
     let val_i = a.(i) in
     let j = ref i in
    while !j > 0 && val_i < a.(!j - 1) do
      a.(!j) <- a.(!j - 1);
      j := !j - 1
    done;
    a.(!j) <- val_i
 done;;
```


Indeed, we can define *arbitrary recursive functions* using references

1. Allocate a ref cell and initialize it with a *dummy function* of the appropriate type:

 $fact_{ref} = ref(\lambda n: Nat. 0)$

2. Define *the body of the function* we are interested in, using *the contents of the reference cell* for making recursive calls:

 $fact_{body} =$

 λn : Nat.

if iszero n then 1 else times n ((! fact_{ref})(pred n))

- "Backpatch" by storing the real body into the reference cell: fact_{ref} := fact_{body}
- Extract the contents of the reference cell and use it as desired:
 fact = ! fact_{ref}

Homework[©]

- Read chapter 13
- Read and chew over the codes of *fullref*.

• HW: 13.3.1 and 13.5.8