
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2023

Issues in Subtyping

Typing with Subsumption
Principle of safe substitution:
─ a value of one can always safely be used where a value of the

other is expected

1. a subtyping relation between types, written S <: T
2. a rule of subsumption stating that, if S <: T, then any value of type S can
also be regarded as having type T, i.e.,

Design Principles of Programming Languages, Spring 2023 3

Subtype Relation: General rules
A subtyping is a binary relation between types that is closed under the
following rules

Design Principles of Programming Languages, Spring 2023 4

Issues in Subtyping
For a given subtyping statement, there are multiple rules that could be
used in a derivation.

1. The conclusions of S-RcdWidth, S-RcdDepth, and S-RcdPerm overlap
with each other.

2. S-REFL and S-TRANS overlap with every other rule.

Design Principles of Programming Languages, Spring 2023 5

Syntax-directed rules
In the simply typed lambda-calculus (without subtyping), each rule can
be “read from bottom to top” in a straightforward way.

If we are given some Γ and some t of the form t! t", we can try to find a
type for t by

1. finding (recursively) a type for t!
2. checking that it has the form T!! ⟶ T!"
3. finding (recursively) a type for t"
4. checking that it is the same as T!!

Design Principles of Programming Languages, Spring 2023 6

Syntax-directed rules
The reason this works is that we can divide the “positions” of the
typing relation into input positions (i.e., Γ and t) and output
positions (T).
─ For the input positions, all metavariables appearing in the premises also

appear in the conclusion (so we can calculate inputs to the “sub-goals”
from the sub-expressions of inputs to the main goal)

─ For the output positions, all metavariables appearing in the conclusions
also appear in the premises (so we can calculate outputs from the main
goal from the outputs of the subgoals)

Design Principles of Programming Languages, Spring 2023 7

Syntax-directed sets of rules
The second important point about the simply typed lambda-calculus is
that the set of typing rules is syntax-directed:
─ For every “input ” Γ and t, there is one rule that can be used to

derive typing statements involving t, e.g.,

if t is an application, then we must proceed by trying to use T-App
─ If we succeed, then we have found a type (indeed, the unique type)

for t
─ If it fails, then we know that t is not typable

⟹ no backtracking!

Design Principles of Programming Languages, Spring 2023 8

Non-syntax-directedness of typing
When we extend the system with subtyping, both aspects of syntax-
directedness get broken.
1. The set of typing rules now includes two rules that can be used to give a type to

terms of a given shape (the old one + T-SUB)

2. Worse yet, the new rule T-SUB itself is not syntax directed: the inputs to the
left-hand sub-goal are exactly the same as the inputs to the main goal

Hence, if we translate the typing rules naively into a typechecking function, the
case corresponding to T-SUB would cause divergence

Design Principles of Programming Languages, Spring 2023 9

Non-syntax-directedness of subtyping
Moreover, the subtyping relation is not syntax directed either

1. There are lots of ways to derive a given subtyping statement
(∵ 8.2.4 /9.3.3 [uniqueness of types] ×)

2. The transitivity rule

is badly non-syntax-directed: the premises contain a metavariable (in
an “input position”) that does not appear at all in the conclusion.
To implement this rule naively, we have to guess a value for U!

Design Principles of Programming Languages, Spring 2023 10

What to do?
We'll turn the declarative version of subtyping into the algorithmic
version

The problem was that

we don't have an algorithm to decide when S <: T or Γ ⊢ t ∶ T

Both sets of rules are not syntax-directed

Design Principles of Programming Languages, Spring 2023 11

Chap 16
Metatheory of Subtyping

Algorithmic Subtyping
Algorithmic Typing

Joins and Meets

Developing
an algorithmic

subtyping relation

Algorithmic Subtyping

What to do
How do we change the rules deriving S <: T to be syntax-directed?

There are lots of ways to derive a given subtyping statement S <: T.
The general idea is to change this system so that there is only one way
to derive it.

Design Principles of Programming Languages, Spring 2023 15

Step 1: simplify record subtyping
Idea: combine all three record subtyping rules into one “macro rule” that
captures all of their effects

Design Principles of Programming Languages, Spring 2023 16

Simpler subtype relation

Design Principles of Programming Languages, Spring 2023 17

Step 2: Get rid of reflexivity
Observation: S-REFL is unnecessary.
Lemma 16.1.2: S <: S can be derived for every type S without using
S-REFL.

Design Principles of Programming Languages, Spring 2023 18

Even simpler subtype relation

Design Principles of Programming Languages, Spring 2023 19

Step 3: Get rid of transitivity
Observation: S-Trans is unnecessary.

Lemma 16.1.2: If S <: T can be derived, then it can be derived without
using S-Trans.

Design Principles of Programming Languages, Spring 2023 20

Even simpler subtype relation

Design Principles of Programming Languages, Spring 2023 21

“Algorithmic” subtype relation

Design Principles of Programming Languages, Spring 2023 22

Soundness and completeness
Theorem[16.1.5]: S <: T iff ↦ S <: T

Terminology:
─ The algorithmic presentation of subtyping is sound with respect to

the original, if ↦ S <: T implies S <: T
(Everything validated by the algorithm is actually true)

─ The algorithmic presentation of subtyping is complete with respect to
the original, if S <: T implies ↦ S <: T

(Everything true is validated by the algorithm)

Design Principles of Programming Languages, Spring 2023 23

Decision Procedures
Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total function 𝑝
from 𝑈 to {true, false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff 𝑢 ∈ 𝑅.

Is our subtype function a decision procedure?
subtype is just an implementation of the algorithmic subtyping rules, we
have

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑡𝑟𝑢𝑒, then ↦ S <: T
hence, by soundness of the algorithmic rules, S <: T

2. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑓𝑎𝑙𝑠𝑒, then not ↦ S <: T
hence, by completeness of the algorithmic rules, not S <: T

Q: What’s missing?

Design Principles of Programming Languages, Spring 2023 24

Decision Procedures
Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic subtyping
rules, we have

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑡𝑟𝑢𝑒, then ↦ S <: T
(hence, by soundness of the algorithmic rules, S <: T)

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑓𝑎𝑙𝑠𝑒, then not ↦ S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

Design Principles of Programming Languages, Spring 2023 25

Decision Procedures
Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic subtyping
rules, we have

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑡𝑟𝑢𝑒, then ↦ S <: T
(hence, by soundness of the algorithmic rules, S <: T)

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑓𝑎𝑙𝑠𝑒, then not ↦ S <: T
(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

Prove it!
Design Principles of Programming Languages, Spring 2023 26

Decision Procedures
Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total function 𝑝
from 𝑈 to {true, false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff 𝑢 ∈ 𝑅.
Example:
𝑈 = 1, 2, 3
𝑅 = {(1, 2), (2, 3)}

Note that, we are saying nothing about computability.

Design Principles of Programming Languages, Spring 2023 27

Decision Procedures
Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total function 𝑝
from 𝑈 to {true, false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff 𝑢 ∈ 𝑅.
Example:
𝑈 = 1, 2, 3
𝑅 = {(1, 2), (2, 3)}

The function 𝑝′ whose graph is
{((1, 2), true), ((2, 3), true)}

is not a decision function for 𝑅

Design Principles of Programming Languages, Spring 2023 28

Decision Procedures
Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total function 𝑝
from 𝑈 to {true, false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff 𝑢 ∈ 𝑅.

Example:
𝑈 = {1, 2, 3}
𝑅 = {(1, 2), (2, 3)}

The function 𝑝′′ whose graph is
{((1, 2), true), ((2, 3), true), ((1, 3), false)}

is also not a decision function for 𝑅

Design Principles of Programming Languages, Spring 2023 29

Decision Procedures
Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total function 𝑝 from 𝑈 to {true,
false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff 𝑢 ∈ 𝑅.

Example:
𝑈 = 1, 2, 3
𝑅 = {(1, 2), (2, 3)}

The function 𝑝 whose graph is

{ ((1, 2), true), ((2, 3), true),
((1, 1), false), ((1, 3), false),
((2, 1), false), ((2, 2), false),
((3, 1), false), ((3, 2), false), ((3, 3), false)}

is a decision function for 𝑅

Design Principles of Programming Languages, Spring 2023 30

Decision Procedures (take 2)
We want a decision procedure to be a procedure.

A decision procedure for a relation 𝑅 ⊆ 𝑈 is a computable total function
𝑝 from 𝑈 to {true, false} such that

𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff u ∈ 𝑅.

Design Principles of Programming Languages, Spring 2023 31

Example
𝑈 = {1, 2, 3}
𝑅 = {(1, 2), (2, 3)}

The function
𝑝(𝑥, 𝑦) = 𝑖𝑓 𝑥 = 2 𝑎𝑛𝑑 𝑦 = 3 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑥 = 1 𝑎𝑛𝑑 𝑦 = 2 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒
𝑒𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒

whose graph is
{ ((1, 2), true), ((2, 3), true),

((1, 1), false), ((1, 3), false),
((2, 1), false), ((2, 2), false),
((3, 1), false), ((3, 2), false), ((3, 3), false)}

is a decision procedure for 𝑅.

Design Principles of Programming Languages, Spring 2023 32

Example
𝑈 = 1, 2, 3
𝑅 = {(1, 2), (2, 3)}

The recursively defined partial function
𝑝(𝑥, 𝑦) = 𝑖𝑓 𝑥 = 2 𝑎𝑛𝑑 𝑦 = 3 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑥 = 1 𝑎𝑛𝑑 𝑦 = 2 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒 𝑒𝑙𝑠𝑒 𝑖𝑓 𝑥 =
1 𝑎𝑛𝑑 𝑦 = 3 𝑡ℎ𝑒𝑛 𝑓𝑎𝑙𝑠𝑒

𝑒𝑙𝑠𝑒 𝑝(𝑥, 𝑦)

whose graph is
{ ((1, 2), true), ((2, 3), true), ((1, 3), false)}

is not a decision procedure for 𝑅.
Design Principles of Programming Languages, Spring 2023 33

Subtyping Algorithm
The following recursively defined total function is a decision procedure
for the subtype relation:

subtype(S, T) =
if T = Top, then true
else if S = S! ⟶ S" and T = T! ⟶ T"

then 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 T!, S! ∧ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S", T")

else if S = {k#: Sj
#∈!..&} and T = {l': Ti'∈!..(}

then {l'
'∈!..)} ⊆ {k#

#∈!..&}
∧ for all 𝑖 ∈ 1. . 𝑛 there is some 𝑗 ∈ 1. .𝑚 with k# = l' and

𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S#, T')
else false.

Design Principles of Programming Languages, Spring 2023 34

Subtyping Algorithm
This recursively defined total function is a decision procedure for the subtype
relation:
subtype(S, T) =

if T = Top, then true
else if S = S! ⟶ S" and T = T! ⟶ T"

then 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 T!, S! ∧ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S", T")
else if S = {k#: Sj

#∈!..&} and T = {l': Ti'∈!..(}

then {l''∈!..)} ⊆ {k#
#∈!..&}

∧ for all 𝑖 ∈ 1. . 𝑛 there is some 𝑗 ∈ 1. .𝑚 with k# = l' and 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S#, T')
else false.

To show this, we need to prove :
1. that it returns 𝑡𝑟𝑢𝑒 whenever S <: T, and
2. that it returns either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒 on all inputs
[16.1.6 Termination Proposition]

Design Principles of Programming Languages, Spring 2023 35

Algorithmic Typing

Algorithmic typing
How do we implement a type checker for the lambda-calculus with
subtyping?

Given a context Γ and a term t, how do we determine its type T, such
that Γ ⊢ t ∶ T?

Design Principles of Programming Languages, Spring 2023 37

Issue
For the typing relation, we have just one problematic rule to deal with: subsumption
rule

Q: where is this rule really needed?

For applications, e.g., the term (λr: {x: Nat}. r. x) {x = 0, y = 1}
is not typable without using subsumption.

Where else??

Nowhere else!
Uses of subsumption rule to help typecheck applications are the only interesting
ones.

Design Principles of Programming Languages, Spring 2023 38

Plan
1. Investigate how subsumption is used in typing derivations by looking

at examples of how it can be “pushed through” other rules;
2. Use the intuitions gained from these examples to design a new,

algorithmic typing relation that
─ Omits subsumption;
─ Compensates for its absence by enriching the application rule;

3. Show that the algorithmic typing relation is essentially equivalent to
the original, declarative one.

Design Principles of Programming Languages, Spring 2023 39

Example (T-ABS)
becomes

Design Principles of Programming Languages, Spring 2023 40

Intuitions
These examples show that we do not need T-SUB to “enable” 𝑻-
𝑨𝑩𝑺 :

given any typing derivation, we can construct a derivation with the
same conclusion in which T-SUB is never used immediately before 𝑇-
𝐴𝐵𝑆.

What about 𝑇-𝐴𝑃𝑃?
We’ve already observed that T-SUB is required for typechecking
some applications
Therefore we expect to find that we cannot play the same game with
T-APP as we’ve done with T-ABS

Let’s see why.
Design Principles of Programming Languages, Spring 2023 41

Example (T−Sub with T-APP on the left)
becomes

Design Principles of Programming Languages, Spring 2023 42

Example (T−Sub with T-APP on the right)
becomes

Design Principles of Programming Languages, Spring 2023 43

Observations
We’ve seen that uses of subsumption rule can be “pushed” from one of
immediately before T -APP ’s premises to the other, but cannot be
completely eliminated

Design Principles of Programming Languages, Spring 2023 44

Example (nested uses of T-Sub)
becomes

Design Principles of Programming Languages, Spring 2023 45

Summary
What we’ve learned:
─ Uses of the T-Sub rule can be “pushed down” through typing derivations until

they encounter either
1. a use of T-App , or
2. the root of the derivation tree.

─ In both cases, multiple uses of T-Sub can be coalesced into a single one.

This suggests a notion of “normal form” for typing derivations, in which
there is
─ exactly one use of T-Sub before each use of T-App,
─ one use of T-Sub at the very end of the derivation,
─ no uses of T T-Sub anywhere else.

Design Principles of Programming Languages, Spring 2023 46

Algorithmic Typing
The next step is to “build in” the use of subsumption rule in application rules, by
changing the T-App rule to incorporate a subtyping premise

Given any typing derivation, we can now
1. normalize it, to move all uses of subsumption rule to either just before

applications (in the right-hand premise) or at the very end
2. replace uses of T-App with T-SUB in the right-hand premise by uses of the

extended rule above

This yields a derivation in which there is just one use of subsumption, at the very
end!
Design Principles of Programming Languages, Spring 2023 47

Minimal Types
But... if subsumption is only used at the very end of derivations, then it is
actually not needed in order to show that any term is typable!
It is just used to give more types to terms that have already been shown to
have a type.

In other words, if we dropped subsumption completely (after refining the
application rule), we would still be able to give types to exactly the same set
of terms — we just would not be able to give as many types to some of them.

If we drop subsumption, then the remaining rules will assign a unique,
minimal type to each typable term
For purposes of building a typechecking algorithm, this is enough
Design Principles of Programming Languages, Spring 2023 48

Final Algorithmic Typing Rules

Design Principles of Programming Languages, Spring 2023 49

Completeness of the algorithmic rules
Theorem [Minimal Typing]:

If Γ ⊢ t ∶ T, then Γ ↦ t ∶ S for some S <: T.
Proof: Induction on typing derivation.

N.b.: All the messing around with transforming derivations was just to
build intuitions and decide what algorithmic rules to write down and
what property to prove:
the proof itself is a straightforward induction on typing derivations.

Design Principles of Programming Languages, Spring 2023 50

Meets and Joins

Adding Booleans
Suppose we want to add booleans and conditionals to the language we
have been discussing.
For the declarative presentation of the system, we just add in the
appropriate syntactic forms, evaluation rules, and typing rules.

Design Principles of Programming Languages, Spring 2023 52

A Problem with Conditional Expressions
For the algorithmic presentation of the system, however, we encounter
a little difficulty.

What is the minimal type of
𝑖𝑓 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑥 = 𝑡𝑟𝑢𝑒, 𝑦 = 𝑓𝑎𝑙𝑠𝑒 𝑒𝑙𝑠𝑒 𝑥 = 𝑡𝑟𝑢𝑒, 𝑧 = 𝑡𝑟𝑢𝑒 ?

Design Principles of Programming Languages, Spring 2023 53

The Algorithmic Conditional Rule
More generally, we can use subsumption to give an expression

if t1 then t2 else t3
any type that is a possible type of both t2 and t3.

So the minimal type of the conditional is the
least common supertype (or join) of

the minimal type of t2 and the minimal type of t3

Q: Does such a type exist for every T2 and T3	 ??
Design Principles of Programming Languages, Spring 2023 54

Existence of Joins
Theorem: For every pair of types S and T, there is a type J such that

1. S <: J
2. T <: J
3. If K is a type such that S <: K and T <: K, then J <: K.

i.e., J is the smallest type that is a supertype of both S and T.

How to prove it?

Design Principles of Programming Languages, Spring 2023 55

Calculating Joins

Design Principles of Programming Languages, Spring 2023 56

Examples
What are the joins of the following pairs of types?

1. {x: Bool, y: Bool} and {y: Bool, z: Bool}?
2. {x: Bool} and {y: Bool}?
3. {x: {a: Bool, b: Bool}} and {x: {b: Bool, c: Bool}, y: Bool}?
4. {} and Bool?
5. {x: {}} and {x: Bool}?
6. Top ⟶ x: Bool and Top ⟶ y: Bool ?
7. x: Bool ⟶ Top and {y: Bool} ⟶ Top?

Design Principles of Programming Languages, Spring 2023 57

Meets
To calculate joins of arrow types, we also need to be able to calculate
meets (greatest lower bounds)!

Unlike joins, meets do not necessarily exist.
E.g., Bool ⟶ Bool and {} have no common subtypes, so they certainly
don’t have a greatest one!

Design Principles of Programming Languages, Spring 2023 58

Existence of Meets
Theorem: For every pair of types S and T, we say that a type M is a meet of S and
T, written S Ù T = M if

1. M <: S
2. M <: T
3. If O is a type such that O <: S and O <: T, then O <:M.

i.e., M (when it exists) is the largest type that is a subtype of both S and T.
Jargon: In the simply typed lambda calculus with subtyping,
records, and booleans ...

Ø The subtype relation has joins
Ø The subtype relation has bounded meets

Design Principles of Programming Languages, Spring 2023 59

Calculating Meets

Design Principles of Programming Languages, Spring 2023 60

Examples
What are the meets of the following pairs of types?

1. {x: Bool, y: Bool} and {y: Bool, z: Bool}?
2. {x: Bool} and {y: Bool}?
3. {x: {a: Bool, b: Bool}} and {x: {b: Bool, c: Bool}, y: Bool}?
4. {} and Bool?
5. {x: {}} and {x: Bool}?
6. Top ⟶ x: Bool and Top ⟶ y: Bool ?
7. x: Bool ⟶ Top and {y: Bool} ⟶ Top?

Design Principles of Programming Languages, Spring 2023 61

HomeworkJ
• Read and digest chapter 16 & 17

• HW: 16.1.2; 16.2.6; 16. 4.1

Design Principles of Programming Languages, Spring 2023 62

