
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang
趙海燕，王迪

Peking University, Spring Term 2023
1

Design Principle of Programming Language, Spring 2023

Chapter 3: Untyped Arithmetic Expressions

A small language of Numbers and Booleans

Basic aspects of programming languages

2Design Principle of Programming Language, Spring 2023

Introduction

Grammar

Programs

Evaluation

3Design Principle of Programming Language, Spring 2023

Grammar (Syntax)

terms:
constant true
constant false
conditional
constant zero
successor
predecessor
zero test

t: metavaraible in the right-hand side (non-terminal symbol)

t ::=
true
false
if t then t else t
0
succ t
pred t
iszero t

For the moment, the words term and expression are used interchangeably
4Design Principle of Programming Language, Spring 2023

Programs and Evaluations

• A program in the language is just a term built from the forms given by the
grammar.

if false then 0 else 1 (1 = succ 0)
à 1
iszero (pred (succ 0))
à true
succ(succ(succ(0)))
à?

5Design Principle of Programming Language, Spring 2023

Syntax

Many ways of defining syntax (besides grammar)

6Design Principle of Programming Language, Spring 2023

Terms, Inductively

The set of terms is the smallest set T such that
1. {true, false, 0} ⊆ T;
2. if t1 ∈ T,

then {succ t1, pred t1, iszero t1} ⊆ T;
1. if t1 ∈ T, t2 ∈ T, and t3 ∈ T,

then if t1 then t2 else t3 ∈ T.

7Design Principle of Programming Language, Spring 2023

Terms, by Inference Rules

The set of terms is defined by the following rules:

Inference rules = Axioms + Proper rules

8Design Principle of Programming Language, Spring 2023

each rule: “If we have established the statements in the premise(s) listed above the line,
then we may derive the conclusion below the line

Terms, Concretely

For each natural number i, define a set Si as follows:

Finally, let

Exercise [**]: How many elements does S3 have?
Proposition: T = S

9Design Principle of Programming Language, Spring 2023

Induction on Terms

Inductive definitions
Inductive proofs

10Design Principle of Programming Language, Spring 2023

Inductive Definitions

The set of constants appearing in a term t, written Consts(t), is defined as:

11Design Principle of Programming Language, Spring 2023

Inductive Definitions

The size of a term t, written size(t), is defined as follows:

12Design Principle of Programming Language, Spring 2023

Inductive Definitions

The depth of a term t, written depth(t), is defined as follows:

13Design Principle of Programming Language, Spring 2023

Inductive Proof

Lemma.
The number of distinct constants in a term t is no greater than the size of t:

| Consts(t) | ≤ size(t)
Proof. By induction over the depth of t.

– Case t is a constant : |Consts(t)| = |{t}| = 1 = size(t).

– Case t is pred t1, succ t1, or iszero t1
By the induction hypothesis, |Consts(t1)| ≤ size(t1), and we have : |Consts(t)|
= |Consts(t1)| ≤ size(t1) < size(t).

– Case t is if t1 then t2 else t3
?

14Design Principle of Programming Language, Spring 2023

Inductive Proof

Theorem [Structural Induction]
If, for each term s,

given P(r) for all immediate subterms r of s
we can show P(s),

then P(s) holds for all s.

suppose P is a predicate on terms.

15Design Principle of Programming Language, Spring 2023

Semantic Styles

Three basic approaches

16Design Principle of Programming Language, Spring 2023

Operational Semantics

• Operational semantics specifies the behavior of a programming language by
defining a simple abstract machine for it.

• An example (often used in this course):
– terms as states
– transition from one state to another as simplification (behavior)
– meaning of t is the final state starting from the state corresponding to t

17Design Principle of Programming Language, Spring 2023

Denotational Semantics

• Giving denotational semantics for a language consists of
– finding a collection of semantic domains, and then
– defining an interpretation function mapping terms into elements of these

domains.

• Main advantage: It abstracts from the gritty details of evaluation and
highlights the essential concepts of the language.

18Design Principle of Programming Language, Spring 2023

Axiomatic Semantics

• Axiomatic methods take the laws (properties) themselves as the definition
of the language.

• The meaning of a term is just what can be proved about it.

– They focus attention on the process of reasoning about programs.

– Hoare logic: define the meaning of imperative languages

19Design Principle of Programming Language, Spring 2023

Evaluation

Evaluation relation (small-step/big-step)
Normal form

Confluence and termination

20Design Principle of Programming Language, Spring 2023

Evaluation on Booleans

21Design Principle of Programming Language, Spring 2023

“t evaluates to t’ in one step

One-step Evaluation Relation

• The one-step evaluation relation → is the smallest binary relation on terms
satisfying the three rules in the previous slide.

• When the pair (t, tʹ) is in the evaluation relation, we say that
“t → tʹ is derivable.”

22Design Principle of Programming Language, Spring 2023

Derivation Tree

• “if t then false else false → if u then false else false” is witnessed by the
following derivation tree:

• where

23Design Principle of Programming Language, Spring 2023

Induction on Derivation

Theorem [Determinacy of one-step evaluation]:
If t → tʹ and t → tʹʹ, then tʹ = tʹʹ.

Proof. By induction on derivation of t → tʹ.

If the last rule used in the derivation of t → tʹ is E-IfTrue, then t has the form
if true then t2 else t3.

It can be shown that there is only one way to reduce such t.
……

24Design Principle of Programming Language, Spring 2023

Normal Form

• Definition: A term t is in normal form if no evaluation rule applies to it.

• Theorem: Every value is in normal form.

• Theorem: If t is in normal form, then t is a value.
– Prove by contradiction (then by structural induction).

25Design Principle of Programming Language, Spring 2023

Multi-step Evaluation Relation

• Definition: The multi-step evaluation relation →∗ is the reflexive, transitive
closure of one-step evaluation.

• Theorem [Uniqueness of normal forms]:
If t →∗ u and t →∗ uʹ, where u and uʹ are both normal forms, then u = uʹ.

• Theorem [Termination of Evaluation]:
For every term t there is some normal form tʹ such that t →∗ tʹ.

26Design Principle of Programming Language, Spring 2023

Big-step Evaluation

27Design Principle of Programming Language, Spring 2023

Extending Evaluation to Numbers

28Design Principle of Programming Language, Spring 2023

Stuckness

• Definition: A closed term is stuck if it is in normal form but not a value.

• Examples:
– succ true
– succ false
– if zero then true else false

29Design Principle of Programming Language, Spring 2023

Summary

• How to define syntax?
– Grammar, Inductively, Inference Rules, Generative

• How to define semantics?
– Operational, Denotational, Axomatic

• How to define evaluation relation (operational semantics)?
– Small-step/Big-step evaluation relation
– Normal form
– Confluence/termination

30Design Principle of Programming Language, Spring 2023

Homework

• Do Exercise 3.5.13 & 3.5.16 in Chapter 3.

31Design Principle of Programming Language, Spring 2023

