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Chapter 3: Untyped Arithmetic Expressions

A small language of Numbers and Booleans

Basic aspects of programming languages
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Introduction

Grammar

Programs

Evaluation
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Grammar (Syntax) 

terms: 
constant true 
constant false 
conditional 
constant zero 
successor 
predecessor 
zero test

t:   metavaraible in the right-hand side (non-terminal symbol)

t ::=
true
false
if t then t else t 
0
succ t
pred t
iszero t

For the moment, the words term and expression are used interchangeably
4Design Principle of Programming Language, Spring 2023



Programs and Evaluations

• A program in the language is just a term built from the forms given by the 
grammar.

if false then 0 else 1        (1 = succ 0)
à 1 
iszero (pred (succ 0))
à true
succ(succ(succ(0)))
à?

5Design Principle of Programming Language, Spring 2023



Syntax

Many ways of defining syntax (besides grammar)
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Terms, Inductively

The set of terms is the smallest set T such that 
1. {true, false, 0} ⊆ T;
2. if t1 ∈ T, 

then {succ t1, pred t1, iszero t1} ⊆ T;
1. if t1 ∈ T, t2 ∈ T, and t3 ∈ T, 

then if t1 then t2 else t3 ∈ T. 
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Terms, by Inference Rules

The set of terms is defined by the following rules: 

Inference rules  =  Axioms +  Proper rules
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each rule: “If we have established the statements in the premise(s) listed above the line, 
then we may derive the conclusion below the line



Terms, Concretely

For each natural number i, define a set Si as follows:

Finally, let 

Exercise [**]:   How many elements does S3 have?
Proposition:  T = S 
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Induction on Terms

Inductive definitions
Inductive proofs

10Design Principle of Programming Language, Spring 2023



Inductive Definitions

The set of constants appearing in a term t,  written Consts(t), is defined as: 
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Inductive Definitions

The size of a term t, written size(t), is defined as follows: 
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Inductive Definitions

The depth of a term t, written depth(t), is defined as follows: 
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Inductive Proof

Lemma.
The number of distinct constants in a term t is no greater than the size of t:

| Consts(t) | ≤ size(t)
Proof. By induction over the depth of t.

– Case t is a constant :  |Consts(t)| = |{t}| = 1 = size(t).

– Case t is pred t1, succ t1, or iszero t1
By the induction hypothesis, |Consts(t1)| ≤ size(t1), and we have : |Consts(t)| 
= |Consts(t1)| ≤ size(t1) < size(t).

– Case t is if t1 then t2 else t3
?
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Inductive Proof

Theorem [Structural Induction]
If, for each term s,

given P(r) for all immediate subterms r of s
we can show P(s), 

then P(s) holds for all s. 

suppose P is a predicate on terms.
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Semantic Styles

Three basic approaches
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Operational Semantics

• Operational semantics specifies the behavior of a programming language by 
defining a simple abstract machine for it. 

• An example (often used in this course): 
– terms as states
– transition from one state to another as simplification (behavior)
– meaning of t is the final state starting from the state corresponding to t
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Denotational Semantics

• Giving denotational semantics for a language consists of 
– finding a collection of semantic domains, and then
– defining an interpretation function mapping terms into elements of these 

domains. 

• Main advantage:    It abstracts from the gritty details of evaluation and 
highlights the essential concepts of the language. 
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Axiomatic Semantics

• Axiomatic methods take the laws (properties) themselves as the definition 
of the language.

• The meaning of a term is just what can be proved about it. 

– They focus attention on the process of reasoning about programs. 

– Hoare logic: define the meaning of imperative languages
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Evaluation

Evaluation relation (small-step/big-step)
Normal form

Confluence and termination
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Evaluation on Booleans
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“t evaluates to t’ in one step



One-step Evaluation Relation

• The one-step evaluation relation → is the smallest binary relation on terms 
satisfying the three rules in the previous slide. 

• When the pair (t, tʹ) is in the evaluation relation,   we say that 
“t → tʹ is derivable.” 

22Design Principle of Programming Language, Spring 2023



Derivation Tree

• “if t then false else false → if u then false else false” is witnessed by the 
following derivation tree: 

• where
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Induction on Derivation

Theorem [Determinacy of one-step evaluation]: 
If t → tʹ and t → tʹʹ, then tʹ = tʹʹ. 

Proof. By induction on derivation of t → tʹ.

If the last rule used in the derivation of t → tʹ is E-IfTrue, then t has the form 
if true then t2 else t3.

It can be shown that there is only one way to reduce such t.
……
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Normal Form

• Definition: A term t is in normal form if no evaluation rule applies to it.

• Theorem: Every value is in normal form.

• Theorem: If t is in normal form, then t is a value. 
– Prove by contradiction (then by structural induction).
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Multi-step Evaluation Relation

• Definition: The multi-step evaluation relation →∗ is the reflexive, transitive
closure of one-step evaluation. 

• Theorem [Uniqueness of normal forms]:
If t →∗ u and t →∗ uʹ, where u and uʹ are both normal forms, then u = uʹ. 

• Theorem [Termination of Evaluation]: 
For every term t there is some normal form tʹ such that t →∗ tʹ. 
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Big-step Evaluation
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Extending Evaluation to Numbers

28Design Principle of Programming Language, Spring 2023



Stuckness

• Definition: A closed term is stuck if it is in normal form but not a value.

• Examples:
– succ true
– succ false
– if zero then true else false
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Summary

• How to define syntax?
– Grammar, Inductively, Inference Rules, Generative

• How to define semantics?
– Operational,  Denotational,  Axomatic

• How to define evaluation relation (operational semantics)?
– Small-step/Big-step evaluation relation
– Normal form
– Confluence/termination
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Homework

• Do Exercise 3.5.13 & 3.5.16 in Chapter 3.
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