wEESHTIRIE
Design Principles of
Programming Languages

Haiyan Zhao,

e

X

b [5]
VAN S Y 4

DI Wang

- JH

Peking University, Spring Term 2023

Recap: untyped lambda-calculus

Syntax

N = terms:
X variable
AX.t abstraction
tt application

Vo= values:
AX.t abstraction value

Design Principles of Programming Language, Spring 2023

Evaluation t— t
: t, — t)
(E-APP1)
Tt — 1T
t) — t)

Syntax

* Definition [Terms]:
Let V be a countable set of variable names.
The set of terms is the smallest set 7 such that
1. x€T foreveryx eV,
2. iftyeT and x € V,then Ax.t, € T;
3. iftteTandt, e T, thent;t, € T.
* Definition: Free Variables of term t, written as FV/(t):
~V(x) = {x}

:V()\X.t1) — FV(t1) \ {X}
-V(t t) = FV(ty) U FV(ty)

Design Principles of Programming Language, Spring 2023 3

Substitution

X — S|X = S
IX=sly .= Y e Y # X
...... x—sl(Ay.t)) = Ay.Ix—slty iy +xandy¢FV(s)
X+—s](t; tp) = [x~s]|t][x~ s]ty

Alpha-conversion . Terms that aiffer only in the names of bound variables
are interchangeable /17 all contexts.

Example:
[x =y z] (Ay. xy)
= [x =y z] (Aw. x w)
= AW.yzW

Design Principles of Programming Language, Spring 2023

Chapter 6:
Nameless Representation of Terms

Terms and Contexis
Shifting and Substitution

Bound Variables

* Recall that bound variables can be renamed, at any moment, to
enable substitution:

(X — S]X = S

(X — sy =y ify +x
...... B o T e e E T R S PN
..... L T o e

* Variable Representation
— Represent variables symbolically, with variable renaming mechanism
— Represent variables symbolically, with bound variables are all different
— “Canonically” represent variables in a way such that renaming is unnecessary
— No use of variables: combinatory logic

Design Principles of Programming Language, Spring 2023

Terms and Contexts

Nameless Terms

* De Bruijin idea: Replacing named variables by natural numbers,
where the number k stands for “the variable bound by the k'th
enclosing A”. e.qg.,

— AXX A0
— AXAY. X (Y X) AA.1(01)

* e.qg., the corresponding nameless term for the following:
cO =As. Az. z;
c2 = As. Az. s (s z);
plus = Am. An. As. Az. m s (n z s);
fix = M. (AX. f (Ay. (X X) ¥)) (AX. f (Ay. (X X) ¥));
foo = (AX. (AX. X)) (AX. X);

Design Principles of Programming Language, Spring 2023 8

Nameless Terms

* Need to keep careful track of how many free variables each term may contain.
Definition [Terms]. Let T be the smallest family of sets {To, T1, T2, ...} such that
1. ke Th whenever 0 £k <n;
2. ift1 € Tn and n>0, then A.t1 € Th-1;
3. ifti € Tn and t2 € Tn, then (t1 t2) € Tn.
* Note:
— terms with no free variables are called the O-terms.

— T'n are set of terms with at most n free variables, n-terms, numbered between 0 and
n-1: a given element of 7'» need not have free variables with all these numbers, or
indeed any free variables at all. When t is closed, for example, it will be an element of

T'n for every n.

— two ordinary terms are equivalent modulo renaming of bound variables iff they have

the same de Bruijn representation.
Design Principles of Programming Language, Spring 2023

Name Context

« To deal with terms containing free variables,
Definition: Suppose X, through x,, are variable names from v. The naming context
[=X, X,-1, - . . X4, Xg assigns to each x the de Bruijn index i. Note that the

rightmost variable in the sequence is given the index 0; this matches the way we
count A binders — from right to left — when converting a named term to

nameless form.
We write dom(I') for the set {x,, . . . X4, X } of variable names mentioned in T .

e eg.,I'=x»4,y»3;z-2;a-1,b-0, under thisI', we have
— X (y z2) ? 4(32)
— AW.yWwW A 40
— AW. AQ. X A A O

Design Principles of Programming Language, Spring 2023 10

Shifting and Substitution

How to define substitution [k - s] t?

Shifting

« Underthe namingcontext I': x—» 1,z 2
[1-=2A0)]JA2— ?
e, [X—Z(AW. W)]JAy. X — ?

« When a substitution goes under a A-abstraction, as in [1 — s](A.2) (i.e.,[x = s] (Ay.x),
assuming that 1 is the index of x in the outer context), the context in which the
substitution is taking place becomes one variable longer than the original,

« We need to increment the indices of the free variables in s so that they keep referring to
the same names in the new context as they did before.

* eg.,s=2(A.0),,ie., s=z(Aw.w), assuming 2 is the index of z in the outer context, we
need to shift the 2 but not the 0

An auxiliary operation: renumber the indices of the free variables in a term.

Design Principles of Programming Language, Spring 2023 12

Shifting

DEFINITION [SHIFTING|: The d-place shift of a term t above cutoff ¢, written
14 (t), is defined as follows:

k it k <c
d _
etk = {k+d if k > o
td(A.ty) = A. 19 (1)
td(t; to) = 14(t)) 19(tp)
We write 14 (t) for 14 (t). O

1. Whatis 12(A.A. 1 (02))?

2. Whatis 12 (A. 01 (A.012))?

Design Principles of Programming Language, Spring 2023 13

Substitution

DEFINITION [SUBSTITUTION]: The substitution of a term s for variable num-
ber j in a term t, written [J — s]t, is defined as follows:

. - s if k=7

3~ slk N {k otherwise

j—s](A.t1) = A.[J+1—11(s)]ty

J=sl(ti t2) = ([J~=slti[]~ s]t2) O
(X — S]X = S

(X — sy =y if y # x

X~ s](Ay.t;) = Ay. [x~ s]t ifty+xandy ¢ FV(s)

x=s](t t2) = [x=s]t [x=s]t

Design Principles of Programming Language, Spring 2023 14

Evaluation

To define the evaluation relation on nameless terms, the only thing
we need to change (i.e., the only place where variable names are
mentioned) is the beta-reduction rule (computation rules), while keep
the other rules identical to what as Figure 5-3.

(AX. t12) to — [x — t2]tyo,

« How to change the above rule for nameless representation?

Design Principles of Programming Language, Spring 2023 15

Evaluation

 Example:

(Ax. t12) th — [x = t2]tyo,

(A.t2) vo — t71([0 —11(v2)]t12)

(A.102) (A.0) — 0 (CA.O) 1

Design Principles of Programming Language, Spring 2023 16

Homework

 Read Chapter 6.
Do Exercise 6.2.5.

6.2.5 EXERCISE [x]: Convert the following uses of substitution to nameless form,
assuming the global context is ' = a,b, and calculate their results using the

above definition. Do the answers correspond to the original definition of sub-
stitution on ordinary terms from §5.37

I. [b—a] (b (Ax.Ay.b))

2. [b—~a(Az.a)] (b (Ax.b))

3. [b—a] (Ab. ba)

4. [b~ a] (Aa. ba) -

Design Principles of Programming Language, Spring 2023 17

Evaluation

* | (AX. t12) t2 — [x~ t2]t,

(A.t12) vo — t71([0 —~11(v2)]t12)

(A.102) (A.0) —0(CA.0) 1

Design Principles of Programming Language, Spring 2023 18

