
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2023

2c4r

Recap: untyped lambda-calculus

Design Principles of Programming Language, Spring 2023 2

Syntax

• Definition [Terms]:
Let 𝒱 be a countable set of variable names.
The set of terms is the smallest set 𝒯 such that

1. x ∈ 𝒯 for every x ∈ 𝒱;
2. if t1 ∈ 𝒯 and x ∈ 𝒱, then λx.t1 ∈ 𝒯;
3. if t1 ∈ 𝒯 and t2 ∈ 𝒯, then t1 t2 ∈ 𝒯.

• Definition: Free Variables of term t，written as FV(t):
FV(x) = {x}
FV(λx.t1) = FV(t1) \ {x}
FV(t1 t2) = FV(t1) ∪ FV(t2)

Design Principles of Programming Language, Spring 2023 3

Substitution

Design Principles of Programming Language, Spring 2023 4

Example:
[x ↦ y z] (𝜆y. x y)

= [x ↦ y z] (λw. x w)
= λw. y z w

Alpha-conversion : Terms that differ only in the names of bound variables
are interchangeable in all contexts.

Chapter 6:
Nameless Representation of Terms

Terms and Contexts
Shifting and Substitution

Bound Variables
• Recall that bound variables can be renamed, at any moment, to

enable substitution:

• Variable Representation
─ Represent variables symbolically, with variable renaming mechanism
─ Represent variables symbolically, with bound variables are all different
─ “Canonically” represent variables in a way such that renaming is unnecessary
─ No use of variables: combinatory logic

Design Principles of Programming Language, Spring 2023 6

Terms and Contexts

Nameless Terms
• De Bruijin idea: Replacing named variables by natural numbers,

where the number 𝑘 stands for “the variable bound by the 𝑘′𝑡ℎ
enclosing λ”. e.g.,
─ λx.x λ.0

─ λx.λy. x (y x) λ.λ. 1 (0 1)

• e.g., the corresponding nameless term for the following:
c0 = λs. λz. z;
c2 = λs. λz. s (s z);
plus = λm. λn. λs. λz. m s (n z s);
fix = λf. (λx. f (λy. (x x) y)) (λx. f (λy. (x x) y));
foo = (λx. (λx. x)) (λx. x);

Design Principles of Programming Language, Spring 2023 8

Nameless Terms
• Need to keep careful track of how many free variables each term may contain.

Definition [Terms]: Let 𝒯 be the smallest family of sets {𝒯0, 𝒯1 , 𝒯2, . . .} such that
1. k ∈ 𝒯n whenever 0 ≤ k < n;
2. if t1 ∈ 𝒯n and n>0, then λ.t1 ∈ 𝒯n−1;
3. if t1 ∈ 𝒯n and t2 ∈ 𝒯n, then (t1 t2) ∈ 𝒯n.

• Note:
─ terms with no free variables are called the 0-terms.
─ 𝒯n are set of terms with at most n free variables, n-terms, numbered between 0 and

n-1: a given element of 𝒯n need not have free variables with all these numbers, or
indeed any free variables at all. When t is closed, for example, it will be an element of
𝒯n for every n.

─ two ordinary terms are equivalent modulo renaming of bound variables iff they have
the same de Bruijn representation.

Design Principles of Programming Language, Spring 2023 9

Name Context
• To deal with terms containing free variables,

Definition: Suppose x0 through xn are variable names from 𝜈. The naming context
Γ = xn, xn−1, . . . x1, x0 assigns to each xi the de Bruijn index i. Note that the
rightmost variable in the sequence is given the index 0; this matches the way we
count λ binders — from right to left — when converting a named term to
nameless form.
We write dom(Γ) for the set {xn, . . . x1, x0 } of variable names mentioned in Γ .

• e.g., Γ = x ↦ 4; y ↦ 3; z ↦ 2; a ↦ 1; b ↦ 0 , under this Γ, we have
─ x (y z) ? 4 (3 2)
─ λw. y w λ. 4 0
─ λw. λa. x λ. λ. 6

Design Principles of Programming Language, Spring 2023 10

Shifting and Substitution

How to define substitution [k ↦ s] t?

Shifting
• Under the naming context Γ : x ↦ 1, z ↦ 2

[1 ↦ 2 (λ. 0)] λ. 2 ⟶ ?
i.e., [x ↦ z (λw. w)] λy. x ⟶ ?

• When a substitution goes under a λ-abstraction, as in [1 ↦ s](λ.2) (i.e.,[x ↦ s] (λy.x),
assuming that 1 is the index of x in the outer context), the context in which the
substitution is taking place becomes one variable longer than the original;

• We need to increment the indices of the free variables in s so that they keep referring to
the same names in the new context as they did before.

• e.g., s = 2 (λ. 0), , i.e., s = z (λw.w), assuming 2 is the index of z in the outer context, we
need to shift the 2 but not the 0

• An auxiliary operation: renumber the indices of the free variables in a term.

Design Principles of Programming Language, Spring 2023 12

Shifting

Design Principles of Programming Language, Spring 2023 13

Substitution

• Example
[1	↦ 2 (λ. 0)] λ. 2	⟶ λ. 3	(λ. 0)
i.e., [x ↦ z (λw. w)] λy. x ⟶ λy.	z	(λw. w)

Design Principles of Programming Language, Spring 2023 14

Evaluation
• To define the evaluation relation on nameless terms, the only thing

we need to change (i.e., the only place where variable names are
mentioned) is the beta-reduction rule (computation rules), while keep
the other rules identical to what as Figure 5-3.

• How to change the above rule for nameless representation?

Design Principles of Programming Language, Spring 2023 15

Evaluation
• Example:

Design Principles of Programming Language, Spring 2023 16

Homework
• Read Chapter 6.
• Do Exercise 6.2.5.

Design Principles of Programming Language, Spring 2023 17

Evaluation

• Example:

Design Principles of Programming Language, Spring 2023 18

