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Recap: untyped lambda-calculus

Syntax

N = terms:
X variable
AX.t abstraction
tt application

Vo= values:
AX.t abstraction value
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Syntax

* Definition [Terms]:
Let V be a countable set of variable names.
The set of terms is the smallest set 7 such that
1. x€T foreveryx eV,
2. iftyeT and x € V,then Ax.t, € T;
3. iftteTandt, e T, thent;t, € T.
* Definition: Free Variables of term t, written as FV/(t):
~V(x) = {x}

:V()\X.t1) — FV(t1) \ {X}
-V(t t) = FV(ty) U FV(ty)
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Substitution

X — S|X = S
IX=sly .= Y e Y # X
...... x—sl(Ay.t)) = Ay.Ix—slty iy +xandy¢FV(s)
X+—s](t; tp) = [x~s]|t][x~ s]ty

Alpha-conversion . Terms that aiffer only in the names of bound variables
are interchangeable /17 all contexts.

Example:
[x =y z] (Ay. xy)
= [x =y z] (Aw. x w)
= AW.yzW
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Chapter 6:
Nameless Representation of Terms

Terms and Contexis
Shifting and Substitution



Bound Variables

* Recall that bound variables can be renamed, at any moment, to
enable substitution:

(X — S]X = S

(X — sy =y ify +x
...... B o T e e E T R S PN
..... L T o e

* Variable Representation
— Represent variables symbolically, with variable renaming mechanism
— Represent variables symbolically, with bound variables are all different
— “Canonically” represent variables in a way such that renaming is unnecessary
— No use of variables: combinatory logic
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Terms and Contexts



Nameless Terms

* De Bruijin idea: Replacing named variables by natural numbers,
where the number k stands for “the variable bound by the k'th
enclosing A”. e.qg.,

—  AXX A0
—  AXAY. X (Y X) AA.1(01)

* e.qg., the corresponding nameless term for the following:
cO =As. Az. z;
c2 = As. Az. s (s z);
plus = Am. An. As. Az. m s (n z s);
fix = M. (AX. f (Ay. (X X) ¥)) (AX. f (Ay. (X X) ¥));
foo = (AX. (AX. X)) (AX. X);
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Nameless Terms

* Need to keep careful track of how many free variables each term may contain.
Definition [Terms]. Let T be the smallest family of sets {To, T1, T2, ...} such that
1. ke Th whenever 0 £k <n;
2. ift1 € Tn and n>0, then A.t1 € Th-1;
3. ifti € Tn and t2 € Tn, then (t1 t2) € Tn.
* Note:
— terms with no free variables are called the O-terms.

— T'n are set of terms with at most n free variables, n-terms, numbered between 0 and
n-1: a given element of 7'» need not have free variables with all these numbers, or
indeed any free variables at all. When t is closed, for example, it will be an element of

T'n for every n.

— two ordinary terms are equivalent modulo renaming of bound variables iff they have

the same de Bruijn representation.
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Name Context

« To deal with terms containing free variables,
Definition: Suppose X, through x,, are variable names from v. The naming context
[ =X, X,-1, - . . X4, Xg assigns to each x the de Bruijn index i. Note that the

rightmost variable in the sequence is given the index 0; this matches the way we
count A binders — from right to left — when converting a named term to

nameless form.
We write dom(I') for the set {x,, . . . X4, X } of variable names mentioned in T .

e eg.,I'=x»4,y»3;z-2;a-1,b-0, under thisI', we have
— X (y z2) ? 4(32)
— AW.yWwW A 40
— AW. AQ. X A A O
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Shifting and Substitution

How to define substitution [k - s] t?



Shifting

« Underthe namingcontext I': x—» 1,z 2
[1-=2A0)]JA2— ?
e, [ X—Z(AW. W) ]JAy. X — ?

« When a substitution goes under a A-abstraction, as in [1 — s](A.2) (i.e.,[x = s] (Ay.x),
assuming that 1 is the index of x in the outer context), the context in which the
substitution is taking place becomes one variable longer than the original,

« We need to increment the indices of the free variables in s so that they keep referring to
the same names in the new context as they did before.

* eg.,s=2(A.0),,ie., s=z(Aw.w), assuming 2 is the index of z in the outer context, we
need to shift the 2 but not the 0

An auxiliary operation: renumber the indices of the free variables in a term.
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Shifting

DEFINITION [SHIFTING|: The d-place shift of a term t above cutoff ¢, written
14 (t), is defined as follows:

k it k <c
d _
etk = {k+d if k > o
td(A.ty) = A. 19 (1)
td(t; to) = 14(t)) 19(tp)
We write 14 (t) for 14 (t). O

1. Whatis 12(A.A. 1 (02))?

2. Whatis 12 (A. 01 (A.012))?
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Substitution

DEFINITION [SUBSTITUTION]: The substitution of a term s for variable num-
ber j in a term t, written [J — s]t, is defined as follows:

. - s if k=7

3~ slk N {k otherwise

j—s](A.t1) = A.[J+1—11(s)]ty

J=sl(ti t2) = ([J~=slti[]~ s]t2) O
(X — S]X = S

(X — sy =y if y # x

X~ s](Ay.t;) = Ay. [x~ s]t ifty+xandy ¢ FV(s)

x=s](t t2) = [x=s]t [x=s]t
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Evaluation

To define the evaluation relation on nameless terms, the only thing
we need to change (i.e., the only place where variable names are
mentioned) is the beta-reduction rule (computation rules), while keep
the other rules identical to what as Figure 5-3.

(AX. t12) to — [x — t2]tyo,

« How to change the above rule for nameless representation?
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Evaluation

 Example:

(Ax. t12) th — [x = t2]tyo,

(A.t2) vo — t71([0 —11(v2)]t12)

(A.102) (A.0) — 0 (CA.O) 1
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Homework

 Read Chapter 6.
Do Exercise 6.2.5.

6.2.5  EXERCISE [x]: Convert the following uses of substitution to nameless form,
assuming the global context is ' = a,b, and calculate their results using the

above definition. Do the answers correspond to the original definition of sub-
stitution on ordinary terms from §5.37

I. [b—a] (b (Ax.Ay.b))

2. [b—~a(Az.a)] (b (Ax.b))

3. [b—a] (Ab. ba)

4. [b~ a] (Aa. ba) -
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Evaluation

* | (AX. t12) t2 — [x~ t2]t,

(A.t12) vo — t71([0 —~11(v2)]t12)

(A.102) (A.0) —0(CA.0) 1
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