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The Typing Relation

Safety = Progress + Preservation



Review: Arithmetic Expression - Syntax

t =
true
false
if t then t else t
0]
succ t
pred t
iszero t

true
false
nv

nv =
0

SucCC 1nv
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terms

constant true
constant false
conditional
constant zero
successor
predecessor
zero test

values
true value
false value
numeric value

numeric values
zero value
successor value




Review: Arithmetic Expression - Evaluation Rules

K
R

uyNI P

dI1s8>

-189%:

if true then t, else t3 — t- (E-IFTRUE)
if false then t, else t3 — t3 (E-IFFALSE)
t; — t}
- (E-IF)
if t; then t; else t3 — 1if t; then t, else tj3
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Review: Arithmetic Expression - Evaluation Rules

t; — t]
succ t; — succ tj
pred O — O
pred (succ nvy) — nv;
_ /
pred t; — pred tj
iszero 0 — true
iszero (succ nvy;) — false
t; — t]
1 1
iszero t; — iszero tj
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(E-Succ)

(E-PREDZERO)

(E-PrREDSUCC)

(E-PRED)

(E-ISZEROZERO)

(E-IszErOSuUCC)

(E-ISZERO)



Evaluation Results

|
I v = values I
I
: true true value I
| false false value :
I nv numeric value :
I
|
| )
| DV = numeric values I
|
| 0 zero value !
I
| succ nv successor value |
I

e Or stucRr;e;s_ _____________________________
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Types of Terms

« Can we tell, without actually evaluating a term, that the term evaluation will
not get stuck?

* |f we can distinguish two types of terms:
— Nat: terms whose results will be a numeric value
— Bool: terms whose results will be a Boolean value

« “atermt has type T” means that
t “obviously” (statically) evaluates to a value of T

— if true then false else true has type Bool
— pred (succ (pred (succ 0))) has type Nat
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The Typing Relation
t: 7T



Types

* Values have two possible “shapes”. either booleans or numbers.

T = types
Bool type of booleans
Nat type of numbers
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Typing Rules

o o e e e e e e e e R e e R R R M R R R e R R R e R R R e R R R M M R R M R R R M R R e e R R R e R R R e e e e e e e e e e e e

true : Bool (T-TRUE)
false : Bool (T-FALSE)

i t1 : Bool to 1@ t3 @ (T-Tr)

1f t; then to else t3 : T

0 : Nat (T-ZERO)
i t1 @ Nat i
| : (T-Succ) |
! succ ty; : Nat !
: t; : Nat |
: : (T-PRED) :
| pred ti : Nat :
i t1 @ Nat i
| 1 (T-ISZERO) !
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Typing Relation: Formal Definition

* Definition:
the typing relation for arithmetic expressions is the smallest binary
relation between terms and types satisfying all instances of the

typing rules.

« Aterm tis typable (or well typed) if there is some T such that{: T.
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Typing Derivation

« Every pair (t, T) in the typing relation can be justified by a derivation
tree built from instances of the inference rules.

T-ZERO T-ZERO

O : Nat O . Nat

T-1ISZERO T-7ZERO T-PRED
iszero O : Bool O : Nat pred O ! Nat

T-1F

if iszero O then O else pred O : Nat

 Proofs of properties about the typing relation often proceed by
induction on typing derivations.

« Statements are formal assertions about the typing of programs.
* Typing rules are implications between statements.
* Derivations are deductions based on typing rules.
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Imprecision of Typing

 Like other static program analyses, type systems are generally
imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)

approximation.
t1 : Bool to ¢ T ty3 ¢ T
1f t; then to else t3 : T

(T-1IF)

Using this rule, we cannot assign a type to

1f true then 0 else false

even though this term will certainly evaluate to a number

Design Principles of Programming Languages, Spring 2023 13



Properties of
The Typing Relation



Inversion Lemma (Generation Lemma)

« Given a valid typing statement, it shows
— how a proof of this statement could have been generated;
— a recursive algorithm for calculating the types of terms.
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
fif t1 then to else t3 : R, then t1 : Bool, t» : R, and
t3 . R.

fO : R, then R = Nat.

&

f succ t; : R, then R = Nat and t{ : Nat.
f pred t; : R, then R = Nat and t; : Nat.
7. If iszero t1 : R, then R = Bool and t; : Nat.
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Typechecking Alg

orithm

typeof (t) =
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if t = true then Bool
else if t = false then Bool
else if t = if t1 then t2 else t3 then
let T1 = typeof(tl) in
let T2 = typeof(t2) in
let T3 = typeof(t3) in
if Tl = Bool and T2=T3 then T2
else "not typable"
else if t = O then Nat
else if t = succ tl then
let T1 = typeof(tl) in
if Tl = Nat then Nat else '"not typable"
else if t = pred tl then
let T1 = typeof(tl) in
if Tl = Nat then Nat else '"not typable"
else if t = iszero tl then
let T1 = typeof(tl) in
if Tl = Nat then Bool else "not typable"
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Canonical Forms

e Lemma:

1. If vis a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

A%

 Proof:

nv ..

values
true true value
false false value
nv numeric value

numeric values
0 zero value

sSucc nv successor value

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv,
since the inversion lemma tells us that v would then have type Nat, not Bool.

Part 2 is similar.
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Uniqueness of Types

 Theorem [Uniqueness of Types]:
Each term { has at most one type. I.e.,
iIf fis typable, then its type is unique.

* Note: later on, we may have a type system where a term may have
many types.
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Safety

Progress + Preservation



Safety (Soundness)

« By safety, it means well-typed terms do not “go wrong”.

By “go wrong”, it means reaching a “stuck state” that is not a final
value but where the evaluation rules do not tell what to do next.
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Safety = Progress + Preservation

Well-typed terms do not get stuck

e Progress: A well-typed term is not stuck (either it is a value or it can take a
step according to the evaluation rules).

e Preservation: If a well-typed term takes a step of evaluation, then the
resulting term is also well typed.
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Progress

Theorem [Progress]: Suppose t is a well-typed term (that is, t : T for some
T). Then either t is a value or else there is some t" with t — .

Proof. By induction on a derivation of { : T.

— case T-True: true : Bool OK?
— case [-False, T-Zero are immediate, since t in these cases is a value.

— case [-If: t=ift, thent, else t,
t,:Bool, t,: T, t3:T
By the induction hypothesis, either t, is a value or there is some t," such that t,
— t,".
If t, is a value, then the canonical forms lemma tells us that it must be either true
or false, in which case either E-IFTrue or E-IFFalse applies to t.

On the other hand, if t; — t, then, by E-IF, t; — if t,"then t, else t;.
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Progress

Theorem [Progress]:  Suppose t is a well-typed term (thatis, t : T for
some T). Then either t is a value or else there is some t' with { — .

Proof. By induction on a derivation of t : T.

— The cases for rules T-Zero, T-Succ, T-Pred, and T-IsZero are
Similar.
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Preservation

Theorem [Preservation]:
Ift: Tandt —t' thent':T.

Proof. By induction on a derivation of t : T. Each step of the induction

assumes that the desired property holds for all sub-derivations and proceed
by case analysis on the final rule in the derivation.

— case T-IF: t=iftythent,elset; t;:Bool, t,: T, t3:T
There are three evaluation rules by which and t — t' can be derived:
E-IFTrue, E-IFFalse, and E-IF. Consider each case separately.

— Subcase E-IFTrue: t;=true t'=1t

Immediate, by the assumption t,: T.

E-IFFalse subcase: similar.
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Preservation

Theorem [Preservation]:
Ift: Tandt— 1t thent' :T.

Proof. By induction on a derivation of t : T. Each step of the induction assumes
that the desired property holds for all sub-derivations and proceed by case analysis
on the final rule in the derivation.

— case T-IF. t=iftithentyelset; t,:Bool, t,:T, t3:T

There are three evaluation rules by which and t — t' can be derived: E-IFTrue, E-

IFFalse, and E-IF. Consider each case separately.

— SubcaseE-IF: t, —1t,/, t'=ift,"thent, else t,

Applying the IH to the subderivation of t; : Bool yields t," : Bool. ombining this with the

assumptions that, t, : T, and t; : T, we can apply rule T-IF to conclude that if if t,’ then
t,elsety: T, thatis, t': T
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Preservation

Theorem [Preservation]:

Ift: Tandt— 1t thent': T.

The preservation theorem is often called subject reduction property (or subject
evaluation property)
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Recap: Type Systems

* Very successful example of a lightweight formal method
 big topic in PL research

« enabling technology for all sorts of other things, e.g., language-based
security

* the skeleton around which modern programming languages are
designed
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Homework

 Read Chapter 8.
Do Exercises 8.3.6
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