WS RIE
Design Principles of
Programming Languages

Haiyan Zhao, Di Wang
Xy, i

Peking University, Spring Term 2023

Chapter 8:
Typed Arithmetic Expressions

Types
The Typing Relation

Safety = Progress + Preservation

Review: Arithmetic Expression - Syntax

t =
true
false
if t then t else t
0]
succ t
pred t
iszero t

true
false
nv

nv =
0

SucCC 1nv
Design Principles of Programming Languages, Spring 2023

terms

constant true
constant false
conditional
constant zero
successor
predecessor
zero test

values
true value
false value
numeric value

numeric values
zero value
successor value

Review: Arithmetic Expression - Evaluation Rules

K
R

uyNI P

dI1s8>

-189%:

if true then t, else t3 — t- (E-IFTRUE)
if false then t, else t3 — t3 (E-IFFALSE)
t; — t}
- (E-IF)
if t; then t; else t3 — 1if t; then t, else tj3

Design Principles of Programming Languages, Spring 2023

Review: Arithmetic Expression - Evaluation Rules

t; — t]
succ t; — succ tj
pred O — O
pred (succ nvy) — nv;
_ /
pred t; — pred tj
iszero 0 — true
iszero (succ nvy;) — false
t; — t]
1 1
iszero t; — iszero tj

Design Principles of Programming Languages, Spring 2023

(E-Succ)

(E-PREDZERO)

(E-PrREDSUCC)

(E-PRED)

(E-ISZEROZERO)

(E-IszErOSuUCC)

(E-ISZERO)

Evaluation Results

|
I v = values I
I
: true true value I
| false false value :
I nv numeric value :
I
|
|)
| DV = numeric values I
|
| 0 zero value !
I
| succ nv successor value |
I

e Or stucRr;e;s_ _____________________________

Design Principles of Programming Languages, Spring 2023 6

Types of Terms

« Can we tell, without actually evaluating a term, that the term evaluation will
not get stuck?

* |f we can distinguish two types of terms:
— Nat: terms whose results will be a numeric value
— Bool: terms whose results will be a Boolean value

« “atermt has type T” means that
t “obviously” (statically) evaluates to a value of T

— if true then false else true has type Bool
— pred (succ (pred (succ 0))) has type Nat

Design Principles of Programming Languages, Spring 2023

The Typing Relation
t: 7T

Types

* Values have two possible “shapes”. either booleans or numbers.

T = types
Bool type of booleans
Nat type of numbers

Design Principles of Programming Languages, Spring 2023 9

Typing Rules

o o e e e e e e e e R e e R R R M R R R e R R R e R R R e R R R M M R R M R R R M R R e e R R R e R R R e e e e e e e e e e e e

true : Bool (T-TRUE)
false : Bool (T-FALSE)

i t1 : Bool to 1@ t3 @ (T-Tr)

1f t; then to else t3 : T

0 : Nat (T-ZERO)
i t1 @ Nat i
| : (T-Succ) |
! succ ty; : Nat !
: t; : Nat |
: : (T-PRED) :
| pred ti : Nat :
i t1 @ Nat i
| 1 (T-ISZERO) !

Design Principles of Programming Languages, Spring 2023 10

Typing Relation: Formal Definition

* Definition:
the typing relation for arithmetic expressions is the smallest binary
relation between terms and types satisfying all instances of the

typing rules.

« Aterm tis typable (or well typed) if there is some T such that{: T.

Design Principles of Programming Languages, Spring 2023 11

Typing Derivation

« Every pair (t, T) in the typing relation can be justified by a derivation
tree built from instances of the inference rules.

T-ZERO T-ZERO

O : Nat O . Nat

T-1ISZERO T-7ZERO T-PRED
iszero O : Bool O : Nat pred O ! Nat

T-1F

if iszero O then O else pred O : Nat

 Proofs of properties about the typing relation often proceed by
induction on typing derivations.

« Statements are formal assertions about the typing of programs.
* Typing rules are implications between statements.
* Derivations are deductions based on typing rules.

Design Principles of Programming Languages, Spring 2023 12

Imprecision of Typing

 Like other static program analyses, type systems are generally
imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)

approximation.
t1 : Bool to ¢ T ty3 ¢ T
1f t; then to else t3 : T

(T-1IF)

Using this rule, we cannot assign a type to

1f true then 0 else false

even though this term will certainly evaluate to a number

Design Principles of Programming Languages, Spring 2023 13

Properties of
The Typing Relation

Inversion Lemma (Generation Lemma)

« Given a valid typing statement, it shows
— how a proof of this statement could have been generated;
— a recursive algorithm for calculating the types of terms.
1. If true : R, then R = Bool.
2. If false : R, then R = Bool.
fif t1 then to else t3 : R, then t1 : Bool, t» : R, and
t3 . R.

fO : R, then R = Nat.

&

f succ t; : R, then R = Nat and t{ : Nat.
f pred t; : R, then R = Nat and t; : Nat.
7. If iszero t1 : R, then R = Bool and t; : Nat.

Design Principles of Programming Languages, Spring 2023 15

S 00 &

Typechecking Alg

orithm

typeof (t) =

Design Principles of Programming Languages, Spring 2023

if t = true then Bool
else if t = false then Bool
else if t = if t1 then t2 else t3 then
let T1 = typeof(tl) in
let T2 = typeof(t2) in
let T3 = typeof(t3) in
if Tl = Bool and T2=T3 then T2
else "not typable"
else if t = O then Nat
else if t = succ tl then
let T1 = typeof(tl) in
if Tl = Nat then Nat else '"not typable"
else if t = pred tl then
let T1 = typeof(tl) in
if Tl = Nat then Nat else '"not typable"
else if t = iszero tl then
let T1 = typeof(tl) in
if Tl = Nat then Bool else "not typable"

16

Canonical Forms

e Lemma:

1. If vis a value of type Bool, then v is either true or false.

2. If v is a value of type Nat, then v is a numeric value.

A%

 Proof:

nv ..

values
true true value
false false value
nv numeric value

numeric values
0 zero value

sSucc nv successor value

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv,
since the inversion lemma tells us that v would then have type Nat, not Bool.

Part 2 is similar.

Design Principles of Programming Languages, Spring 2023 17

Uniqueness of Types

 Theorem [Uniqueness of Types]:
Each term { has at most one type. I.e.,
iIf fis typable, then its type is unique.

* Note: later on, we may have a type system where a term may have
many types.

Design Principles of Programming Languages, Spring 2023 18

Safety

Progress + Preservation

Safety (Soundness)

« By safety, it means well-typed terms do not “go wrong”.

By “go wrong”, it means reaching a “stuck state” that is not a final
value but where the evaluation rules do not tell what to do next.

Design Principles of Programming Languages, Spring 2023 20

Safety = Progress + Preservation

Well-typed terms do not get stuck

e Progress: A well-typed term is not stuck (either it is a value or it can take a
step according to the evaluation rules).

e Preservation: If a well-typed term takes a step of evaluation, then the
resulting term is also well typed.

Design Principles of Programming Languages, Spring 2023 21

Progress

Theorem [Progress]: Suppose t is a well-typed term (that is, t : T for some
T). Then either t is a value or else there is some t" with t — .

Proof. By induction on a derivation of { : T.

— case T-True: true : Bool OK?
— case [-False, T-Zero are immediate, since t in these cases is a value.

— case [-If: t=ift, thent, else t,
t,:Bool, t,: T, t3:T
By the induction hypothesis, either t, is a value or there is some t," such that t,
— t,".
If t, is a value, then the canonical forms lemma tells us that it must be either true
or false, in which case either E-IFTrue or E-IFFalse applies to t.

On the other hand, if t; — t, then, by E-IF, t; — if t,"then t, else t;.

Design Principles of Programming Languages, Spring 2023

22

Progress

Theorem [Progress]: Suppose t is a well-typed term (thatis, t : T for
some T). Then either t is a value or else there is some t' with { — .

Proof. By induction on a derivation of t : T.

— The cases for rules T-Zero, T-Succ, T-Pred, and T-IsZero are
Similar.

Design Principles of Programming Languages, Spring 2023 23

Preservation

Theorem [Preservation]:
Ift: Tandt —t' thent':T.

Proof. By induction on a derivation of t : T. Each step of the induction

assumes that the desired property holds for all sub-derivations and proceed
by case analysis on the final rule in the derivation.

— case T-IF: t=iftythent,elset; t;:Bool, t,: T, t3:T
There are three evaluation rules by which and t — t' can be derived:
E-IFTrue, E-IFFalse, and E-IF. Consider each case separately.

— Subcase E-IFTrue: t;=true t'=1t

Immediate, by the assumption t,: T.

E-IFFalse subcase: similar.

Design Principles of Programming Languages, Spring 2023 24

Preservation

Theorem [Preservation]:
Ift: Tandt— 1t thent' :T.

Proof. By induction on a derivation of t : T. Each step of the induction assumes
that the desired property holds for all sub-derivations and proceed by case analysis
on the final rule in the derivation.

— case T-IF. t=iftithentyelset; t,:Bool, t,:T, t3:T

There are three evaluation rules by which and t — t' can be derived: E-IFTrue, E-

IFFalse, and E-IF. Consider each case separately.

— SubcaseE-IF: t, —1t,/, t'=ift,"thent, else t,

Applying the IH to the subderivation of t; : Bool yields t," : Bool. ombining this with the

assumptions that, t, : T, and t; : T, we can apply rule T-IF to conclude that if if t,’ then
t,elsety: T, thatis, t': T

Design Principles of Programming Languages, Spring 2023 25

Preservation

Theorem [Preservation]:

Ift: Tandt— 1t thent': T.

The preservation theorem is often called subject reduction property (or subject
evaluation property)

Design Principles of Programming Languages, Spring 2023 26

Recap: Type Systems

* Very successful example of a lightweight formal method
 big topic in PL research

« enabling technology for all sorts of other things, e.g., language-based
security

* the skeleton around which modern programming languages are
designed

Design Principles of Programming Languages, Spring 2023 27

Homework

 Read Chapter 8.
Do Exercises 8.3.6

Design Principles of Programming Languages, Spring 2023 28

