KI
AR

UNI P

.189%.

{Z1s8>

WiEa s RE
Design Principles of
Programming Languages

Haiyan Zhao, Di Wang

P

—
(i o —
VAN S Y A

—\

=

Peking University, Spring Term 2023

Ki
R

UNI P

{Z1s8>

.189%.

Teaching Team

Instructors
Teaching Assistant

Instructors

e Haiyan Zhao (EXif3He)
— 1988, BS, Peking Univ.
— 1991, MS, Peking Univ.
— 2003, PhD, Univ. of Tokyo
— 2003-, Assoc. Professor, Peking Univ.

e Research Interest
— Software engineering
— Requirements Engineering, Domain Engineering
— Programming Languages

e Contact
— Office: Rm. 1809, Science Blg #1, Yanyuan /Rm 432, CS Blg, Changping
— Email: zhhy@sei.pku.edu.cn

— Phone: 62757670

Design Principle of Programming Language, Spring 2023 3

Instructors

e DiWang (Fi)
— 2017, BS, Peking Univ.
— 2022, PhD, Carnegie Mellon Univ.
— 2022-, Assistant Professor, Peking Univ.

* Research Interests
— Programming Languages
— Quantitative Program Analysis and Verification
— Probabilistic Programming

* Contact
— Office: Rm. 520, Yanyuan Mansion
— Tel: 62757242
— Email: wangdi95@pku.edu.cn
— Webpage: https://stonebuddha.github.io

Design Principle of Programming Language, Spring 2023 4

mailto:wangdi95@pku.edu.cn
https://stonebuddha.github.io/

Teaching Assistant

Ki
R

UNI P

4ilsﬁ®

.[89%.

e Lijuan Tang (JENNIE)
— PhD student, Programming Languages Laboratory
— Email: lijuan_tang@stu.pku.edu.cn

Design Principle of Programming Language, Spring 2023

mailto:lijuan_tang@stu.pku.edu.cn

UNIp

Information

K1
QQ’.:N R
g lS’AA}

-189%:

e Time: Monday 7-9 (15:10-18:00)
* Place: E-F# L 201

e
b

: E{Hj): DPPL-2023 &%
e Course website: BiR

https://pku-dppl.github.io/2023/ @ @
- >yllabus
— Lecture Notes (slides) T e nre e PR

— Other useful resources E T A T R

Design Principle of Programming Language, Spring 2023

https://pku-dppl.github.io/2023/

KI
2R

UNI P

{Z1s8>

-189%:

Course Overview

Design Principle of Programming Language, Spring 2023

Computer Science = PL Construction

“...the technology for coping with large-scale

Structure and

computer systems merges with the technology for Interpretation
e - of Computer
building new computer languages, and computer Programs

science itself becomes no more (and no less) than second ilon
the discipline of constructing appropriate

descriptive languages”

Harold Abelson and
Gerald Jay Sussman
with Julie Sussman

Design Principle of Programming Language, Spring 2023

NI
0\3 %

What is this course about?

.189%.

e Study fundamental (formal) approaches to describing program behaviors
that are both precise and abstract.

— precise so that we can use mathematical tools to formalize and check
interesting properties

— abstract so that properties of interest can be discussed clearly, without
getting bogged down in low-level details

Design Principle of Programming Language, Spring 2023 9

NI
0\3 %

What you can get out of this course?

.189%.

* A more sophisticated perspective on programs, programming languages,
and the activity of programming

— How to view programs and whole languages as formal, mathematical
objects

— How to make and prove rigorous claims about them
— Detailed study of a range of basic language features

» Powerful tools/techniques for language design, description, and analysis

Design Principle of Programming Language, Spring 2023 10

This course Is not about ...

UNIp

KI
ii!ii&
{y IS%®

.189%.

* An introduction to programming
* A course on compiler
* A course on functional programming

* A course on language paradigms/styles

All the above are certainly helpful for your deep understanding of
this course.

Design Principle of Programming Language, Spring 2023

11

Ki
R

What background is required?

UNI P

{llsﬁg

.[89%.

* Basic knowledge on
— Discrete mathematics: sets, functions, relations, orders
— Algorithms: list, tree, graph, stack, queue, heap
— Elementary logics: propositional logic, first-order logic

e Familiar with a programming language and basic knowledge of compiler
construction

Design Principle of Programming Language, Spring 2023

12

Textbook

UNI P

Ki
3R
218>

-189%:

« Types and Programming Languages
— Benjamin Pierce
— The MIT Press
— 2002-02-01
— ISBN 9780262162098

Design Principle of Programming Language, Spring 2023

T)';)OS and

Programming

Languages

13

Outline

e Basic operational semantics and proof techniques
* Untyped Lambda calculus

* Simple typed Lambda calculus

* Simple extensions (basic and derived types)

* References

* Exceptions

e Subtyping

* Recursive types

* Polymorphism

* [Higher-order systems]

Design Principle of Programming Language, Spring 2023 14

Grading

* Activity in class + midTest : 20%
* Homework: 40%

* Final (Report/Presentation): 40%

B —ABERZGOEFIES, B ERTORA, S A KRN
o Xt —ANEET, RIEKRZERERENG/ T REE,
o XIH—NLHIETHEA R4
o I —ANEXHAFHE ARG ALIE S
o BIH—MRANEFEERTHERZA,
RIERm B AR A BT m T RAART L K.
o XH—NMRARG, FERRRELERERNESHE,
« BIH—NEABRA, £RFHOFITEF LA TFFEA
e R "NEREG%, RIEFHANFEHHEREL—CHEZELK

fift e B A ST AT IR A AR B AR

Design Principle of Programming Language, Spring 2023

15

NI
0\3 %

How to study this course?

.189%.

&
0
5
ﬁ
*

* Before class: scanning through the chapters to learn and gain feeling about
what will be studied

* In class: trying your best to understand the contents and raising hands
when you have questions

* After class: doing exercises seriously

* Quick check 30 seconds to 5 minutes
* % Easy < 1 hour
* % X Moderate < 3 hours

* %k k Challenging > 3 hours

Design Principle of Programming Language, Spring 2023 16

UNIp

Ki
R
4JIS*®

.189%.

Chapter 1: Introduction

What is a type system
What type systems are good for
Type systems and programming languages

Design Principle of Programming Language, Spring 2023

17

Types in PL (CS)

Design Principle of Programming Language, Spring 2023

1870s
1900s
1930s
1940s
1950s

1960s

1970s

1980s

1990s

origins of formal logic
formalization of mathematics
untyped lambda-calculus
simply typed lambda-calculus
Fortran

Algol-60

Automath praoject

Simula

Curry-Howard correspondence
Algol-68

Pascal

Martin-Lof type theory
System F, F®

polymorphic lambda-calculus
CLU

polymorphic type inference
ML

intersection types

NuPRL project

subtyping

ADTs as existential types
calculus of constructions
linear logic

bounded quantification

Edinburgh Logical Framework
Forsythe
pure type systems

dependent types and modularity

Quest
effect systems

row variables; extensible records

higher-order subtyping
typed intermediate languages
object calculus

translucent types and modularity

typed assembly language

Frege (1879)

Whitehead and Russell (1910)

Church (1941)

Church (1940), Curry and Feys (1958)

Backus (1981)

Naur et al. (1963)

de Bruijn (1980)

Birtwistle et al. (1979)

Howard (1980)

(van Wijngaarden et al., 1975)

Wirth (1971)

Martin-Lof (1973, 1982)

Girard (1972)

Reynolds (1974)

Liskov et al. (1981)

Milner (1978), Damas and Milner (1982)
Gordon, Milner, and Wadsworth (1979)

Coppo and Dezani (1978)

Coppo, Dezani, and Sallé (1979), Pottinger (1980)
Constable et al. (1986)

Reynolds (1980), Cardelli (1984), Mitchell (1984a)
Mitchell and Plotkin (1988)

Coquand (1985), Coquand and Huet (1988)
Girard (1987) , Girard et al. (1989)

Cardelli and Wegner (1985)

Curien and Ghelli (1992), Cardelli et al. (1994)
Harper, Honsell, and Plotkin (1992)

Reynolds (1988)

Terlouw (1989), Berardi (1988), Barendregt (1991)
Burstall and Lampson (1984), MacQueen (1986)
Cardelli (1991)

Gifford et al. (1987), Talpin and Jouvelot (1992)
Wand (1987), Rémy (1989)

Cardelli and Mitchell (1991)

Cardelli (1990), Cardelli and Longo (1991)
Tarditi, Morrisett, et al. (1996)

Abadi and Cardelli (1996)

Harper and Lillibridge (1994), Leroy (1994)
Morrisett et al. (1998)

18

NI
G\) %

What is a type system (type theory)?

.[89%.

* A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds of
values they compute.

— Tools for program reasoning*

— Classification of terms

— Static approximation**

— Proving the absence rather than presence (conservative)
— Fully automatic (and efficient)

Design Principle of Programming Language, Spring 2023 19

What are type systems good for?

* Detecting Errors
— Many programming errors can be detected early, fixed intermediately and easily.
— Errors can often be pinpointed more accurately during typechecking than at run time, when their
effects may not become visible until some time after things begin to go wrong.
— Expressive type systems offer numerous “tricks” for encoding information about structure in terms of
types
- Abstraction
— Type systems form the backbone of the module languages and tie together the components of large
systemsin the context of large-scale software composition
— aninterface itself can be viewed as “the type of a module” , providing a summary of the facilities
provided by the module
* Documentation
— The type declarations in procedure headers and module interfaces constitute a form of (checkable)
documentation.
— this form of documentation cannot become outdated as it is checked during every run of the compiler.
This role of types is particularly important in module signatures.

Design Principle of Programming Language, Spring 2023 20

What are type systems good for?

* Language Safety

— A safe language is one that protects its own abstractions.

— Safety refers to the language’s ability to guarantee the integrity of these abstractions
and of higher-level abstractions introduced by the programmer using the definitional
facilities of the language.

— Language safety is not the same thing as static type safety, and can be achieved by
static checking, but also by run-time checks

* Efficiency
— Removal of dynamic checking; smart code-generation
— most high-performance compilers rely heavily on information gathered by the
typechecker during optimization and code-generation phases.

Design Principle of Programming Language, Spring 2023 21

UNI P

Ki
R
i3

.]89%.

Type Systems and Languages Design

e Language design should go hand-in-hand with type system design.
— Languages without type systems tend to offer features that make
typechecking difficult or infeasible.

— Concrete syntax of typed languages tends to be more complicated than

that of untyped languages, since type annotations must be taken into

account.

In typed languages the type system itself is often taken as the foundation of the design and

the organizing principle in light of which every other aspect of the design is considered.

Design Principle of Programming Language, Spring 2023 22

Homework

 Read Chapters 1 and 2.

* |nstall OCaml and read “Basics”

— Qverview
* https://ocaml.org/docs/

— |nstallation

* https://ocaml.org/docs/up-and-running

Design Principle of Programming Language, Spring 2023 23

https://ocaml.org/docs/
https://ocaml.org/docs/up-and-running

