
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2023

Practice in Class

arith, fullsimple, fullref

Structure of package

Scan tokes
(lexer.mll)

Parse terms
(parser.mly)

Evaluate
each terms

(eval in
core.ml)

Print the
values

(printtm in
syntax.ml)

main.ml drives the whole process

Design Principles of Programming Languages, Spring 2023 3

Commands

• Each line of the source file is parsed as a command

─ type command = | Eval of info * term

─ New commands will be added later

• Main routine for each file

let process_file f =

alreadyImported := f :: !alreadyImported;

let cmds = parseFile f in

let g c =

open_hvbox 0;

let results = process_command c in

print_flush();

results

in

List.iter g cmds

Design Principles of Programming Languages, Spring 2023 4

Structure of package: syntax

• Info: a data type recording the position of the term in the source file

• syntax. ml defines the terms

Design Principles of Programming Languages, Spring 2023 5

Structure of package: evaluation

• eval in core.ml

• eval1: perform a single step reduction

Design Principles of Programming Languages, Spring 2023 6

Structure of package : evaluation

let rec isnumericval t = match t with

TmZero(_) → true

| TmSucc(_, t1) → isnumericval t1

| _ → false

Design Principles of Programming Languages, Spring 2023 7

Some abbreviations

• UCID = upper case identifier

• LCID = lower case identifier

• ty = type

• tm = term

• LCURLY = “{“

• RCURLY = “}”

• LPAREN = “(“

• RPAREN = “)“

• USCORE = “_”

• ……

Design Principles of Programming Languages, Spring 2023 8

Exercise arith.simple_use

• Using arith to write the following equation

─ Return five if two is not zero, otherwise return nine

─ Hint: read the code in parser.mly

Design Principles of Programming Languages, Spring 2023 9

Exercise arith.size

• Make the evaluation computes the size of a term (3.3.2) instead of

reducing the term, and test it on the original test.f

─ Hint:

• pr: string -> unit prints a string to the screen

• string_of_int : int -> string converts an integer into a string

• Remember to change both .ml and .mli files

Design Principles of Programming Languages, Spring 2023 10

Big-step vs small-step

• Big-step is usually easier to understand

─ called “natural semantics” in some articles

• Big-step often leads to simpler proof

• Big-step cannot describe computations that do not produce a value

─ Non-terminating computation

─ “Stuck” computation

Design Principles of Programming Languages, Spring 2023 11

Exercise arith.big-step

• Change the evaluation to use big-step semantics, and compute the

following expressions:

─ true;

─ if false then true else false;

─ if 0 then 1 else 2;

─ if true then (succ false) else 2;

─ 0;

─ succ (pred 0);

─ iszero (pred (succ (succ 0)));

Design Principles of Programming Languages, Spring 2023 12

fullsimple

• Implementing all extensions in Chapter 11.

• Allow different types of command:

─ evaluation: type-checking and reducing a term

─ bindings

• Variable binding: a: Int;

• Type variable binding: T;

• Term abbreviation binding: t = succ 0;

• Type abbreviation binding: T = Nat -> Nat;

• Types can be used without declaration (uninterpreted types)

x:X

(lambda a:X. a) x
Design Principles of Programming Languages, Spring 2023 13

Review: nameless representation

• What is the nameless representation of the following term?

𝜆𝑥. 𝑥 (𝜆𝑦. 𝑥 𝑦)

𝜆. 0 (𝜆. 1 0)

Design Principles of Programming Languages, Spring 2023 14

Fullsimple, terms

type term =

TmVar of info * int * int

| TmAbs of info * string * ty * term

| TmApp of info * term * term

| …

• Using nameless representation of terms

• The second int for TmVar is used for debugging

─ = the number of items in the context

• The “string” in TmAbs is used for printing

Design Principles of Programming Languages, Spring 2023 15

Example: printing terms

and printtm_ATerm outer ctx t = match t with

| TmVar(fi, x, n) ->

if ctxlength ctx = n then

pr (index2name fi ctx x)

else

pr (“[bad index: ” ^ ……)

| TmAbs(fi, x, tyT1, t2) ->

(let (ctx’, x') = (pickfreshname ctx x) in

obox(); pr "lambda ";

pr x'; pr ":"; printty_Type false ctx tyT1; pr "."; …

printtm_Term outer ctx' t2; …

Design Principles of Programming Languages, Spring 2023 16

Review: context

• What contexts are used in our course?

─ Mapping names to integers in

nameless representation

─ Σ: mapping variables to types

• Can be combined into one

• New contexts in the implementation

─ Type variable binding: marking type

variables

─ Term abbreviation binding: Mapping

variables to terms (and their types)

─ Type abbreviation binding: Mapping type

variables to terms

type binding =

NameBind

| TyVarBind

| VarBind of ty

| TmAbbBind of term * (ty option)

| TyAbbBind of ty

type context = (string * binding) list

Design Principles of Programming Languages, Spring 2023 17

Auxiliary functions for nameless representation

• name2index

info->context ->string->int

return the index of a name

• index2name

info->context ->int->string

inverse of the above

• pickfreshname

context->string ->(context, string)

generate a fresh name using the second

parameter as hint

type binding =

NameBind

| TyVarBind

| VarBind of ty

| TmAbbBind of term * (ty option)

| TyAbbBind of ty

type context = (string * binding) list

Design Principles of Programming Languages, Spring 2023 18

Exercise fullsimple.nameless

• Construct a term t that is evaluated a term t’ in fullsimple, where t’ is

different from t via only alpha-renaming (i.e., no beta-reduction)

Design Principles of Programming Languages, Spring 2023 19

Exercise fullsimple.match

• Add pattern matching for tuples, and test on the following expressions

─ let {x, y, z} = {true, 1, {2}} in z;

─ let {x, y, z} = {true, 1, {2}} in (lambda x:Nat. x) y;

─ let {x, y, z} = let x = 1 in {true, x, {2}} in z;

─ lambda x:Nat. let {x, y} = {true, 1} in x;

─ let x = 0 in let {y, z} = {1, 2} in x;

─ let {y, z} = {1, 2} in let y = 3 in y;

• Part of the code is already provided to you in the following two pages

Design Principles of Programming Languages, Spring 2023 20

Partial code for fullsimple.match
• Adding the following line to “type term =” in syntax.ml

─ | TmPLet of info * string list * term * term

• Adding the following lines after line 235 in parser.mly

─ | LET Pattern EQ Term IN Term

{ fun ctx -> TmPLet($1, $2, $4 ctx, $6 (List.fold_left (fun x y -> addname x y) ctx $2)) }

─ Pattern :

LCURLY MetaVars RCURLY

{ $2 }

| LCURLY RCURLY

{ [] }

• Add the following line to tminfo in syntax.ml

─ | TmPLet(fi,_,_,_) -> fi

Design Principles of Programming Languages, Spring 2023 21

Partial code for fullsimple.match
• Adding the following lines to “printtm_Term” in syntax.ml

| TmPLet(fi, xs, t1, t2) ->

obox0();

pr "let {";

let rec print xs =

match xs with

x::x'::rest -> pr x; pr ","; print (x'::rest);

| x::[] -> pr x;

| [] -> pr ""; in

print xs;

pr "} = ";

printtm_Term false ctx t1;

print_space(); pr "in"; print_space();

let ctx' = List.fold_left (fun ctx x -> addname ctx x) ctx xs in

printtm_Term false ctx' t2;

cbox()

Design Principles of Programming Languages, Spring 2023 22

Key to fullsimple.match

• Add the following lines to eval1

| TmPLet(fi,p,v1,t2)

when (isval ctx v1) && (is_matched p v1) ->

let m = terms v1 in

List.fold_left (fun term v -> termSubstTop v term) t2 (List.rev m)

• And add the following two functions

let is_matched patterns tmrecord = match tmrecord with

| TmRecord(fi, fields) ->

List.length fields = List.length patterns

| _ -> false

let terms tmrecord = match tmrecord with

TmRecord(_, fields) -> List.map (fun (_, t) -> t) fields

| _ -> []

Design Principles of Programming Languages, Spring 2023 23

Key to fullsimple.match

• Add the following lines to typeof

─ | TmPLet(fi,p,t1,t2) ->

─ (match typeof ctx t1 with

─ | TyRecord(fields) when List.length fields = List.length p ->

─ let (ctx', _) = List.fold_left (

─ fun (ctx, xs) (_, tyT1) ->

─ let ctx' = addbinding ctx (List.hd xs) (VarBind(tyT1)) in

─ (ctx', List.tl xs)

─) (ctx, p) fields in

─ typeShift (- List.length fields) (typeof ctx' t2)

─ | _ -> error fi "pattern mismatch")

• Add the following line to tmmap in syntax.ml

─ | TmPLet(fi,p,t1,t2) -> TmPLet(fi,p,walk c t1,walk (c+(List.length p)) t2)

Design Principles of Programming Languages, Spring 2023 24

Exercise fullsimple.natlist

• Try the following term in fullsimple and explain why it cannot be typed

NatList = <nil:Unit, cons:{Nat,NatList} >;

nil = <nil=unit> as NatList;

cons = lambda n:Nat. lambda l:NatList. <cons={n, l}> as NatList;

Design Principles of Programming Languages, Spring 2023 25

Exercise fullsimple.let

• Do exercise 11.5.1 letexercise

Design Principles of Programming Languages, Spring 2023 26

Exercise for fullsimple.rec_fix

• Define plus using fix and test the following expressions

─ plus 10 105;

─ plus 0 1;

─ plus 0 0;

─ plus 2 0;

Design Principles of Programming Languages, Spring 2023 27

Exercise fullref.rec_no_fix

• Write plus without using fix or letrec in fullref

Design Principles of Programming Languages, Spring 2023 28

Homework

• Please use the associated code to finish the exercises

• If an exercise asks for a program in the defined language, submit the

program.

• If an exercise asks for modifying the interpreter

─ Submit all code

─ Your submission should contain file test.f that contains the expressions

required by the exercise

─ TA will perform the following two commands to verify your submission:

• make

• ./f test.f

• Please submit a compressed file where each problem in a separate folder

Design Principles of Programming Languages, Spring 2023 29

