Design Principles of Programming Languages
wITE SR RIE

Haiyan Zhao, Di Wang
g, T8

Peking University, Spring Term 2024

Recursive Types

YR

Review: Lists Defined in Chapter 11

List T describes finite-length lists whose elements are of type T.

Syntactic Forms

tz=...|nil[T] | cons(T] tt|isnil[T] t|head[T] t| tail[T] t
vi=...|nil[T] | cons[Tlvv
Tu=...|ListT

Typing Rules
. 'Et;:Th N-t,:List T
; ; T-Nil - T-Cons
NFnil[T;]:List Tq I'~cons[Tq] t; to :List Tq
Ity :List Ty, Ity :List Ty, Ity :List Tqyq

T-IsNil T-Head T-Tail
M+ isnil(T;] 4 :Bool FFheadTiil tr:Toy Tk tailTy]ty :List Ty

BoolList: A Specialized Version

BoollList describes finite-length lists whose elements are of Booleans.

Syntactic Forms

tz=...|nil|constt|isnil t|headt|tailt
vi=...|nil|consvv
T:=...|BoollList

Typing Rules
) '+ t7 :Bool I'+t, :Boollist
: — T-Nil - T-Cons
I'nil : BoolList I'-cons t; t, : BoolList
I't; :Boollist '+ t; :Boollist I't; : BoolList

T-Tail
' tail t; : BoolList

T-IsNil T-Head
I isnilt; :Bool I+ headt; :Bool

Review: Natural Numbers Defined in Chapter 8

Nat describes natural numbers.

Syntactic Forms

tz=...|0|succt|iszerot|predt

vi=...|0]succv

T:=...|Nat

Typing Rules
1.7 't :Nat s
—_— - r _—_— -
I'-0:Nat e '+ succ t; : Nat vee
'kt :Nat 't :Nat
T-IsZero ——————— [-Pred

'+~ iszero t; : Bool I+ pred t; : Nat

Similarity between Lists and Natural Numbers

Do you notice that the structures and rules for lists and natural numbers are very similar?

Introduction Forms

Terms that introduce (or construct) values of a certain type.
e Boolean lists: nil andcons t t
e Natural numbers: 8 and succ t

Elimination Forms

Terms that eliminate (or destruct) values of a certain type.
They tell us how to use those values.

e Boolean lists: isnil t, head t,and tail t
e Natural numbers: iszero tand pred t

Unifying Introduction Forms for A Type

It would be useful to unify multiple introduction forms into a single one.

Boolean Lists
A Boolean list is either () an empty list nil, or (i) a cons list of a Boolean and a Boolean list.

' t; :Unit +Bool x BoolList
'+ fold [BoolList] t; : BoolList

We use sum types to unify multiple possibilities.
Thatis, Unit stands for case i and Bool x BoolList stands for case ii.

T-Fold-BoolList

Remark (Sum Types])

Fl—t1:T1 Fl—t1:T2
: T-Inl - T-Inr
FrEinlt; Ty +T, Feinrty : T+ T,

Fto:TH+To Fxy:TiEt T Fixo:TokEt:T
l'-casetgpofinl xy =ty |inrx; =t : T

T-Case

Unifying Introduction Forms for A Type

Natural Numbers
A natural number is either (i) zero 8, or (i) a succ of a natural number.
'k t;:Unit +Nat
I' - fold [Nat] t; : Nat

Similarly, Unit stands for case i and Nat stands for caseii.

T-Fold-Nat

Example

8 = fold [Nat] (inl unit)
succ t = fold [Nat] (inr t)

nil = fold [BoolList] (inl unit)
cons t; t; = fold [Boollist] (inr {t;,t2})

Generalizing the fold Operator

Can we inline the meaning of BoolList into fold?

Recursion Operator p

We can think of BoolList as a type satisfying the equation BoolList = Unit + Bool x BoolList.
Abstractly, it is a solution to the equation X = Unit +Bool x X. Let us denote it by uX. Unit +Bool x X.

Principle
Let us write fold [X.Unit +Bool x X] for fold [BoolList].

'ty :Unit +Bool x (uX.Unit +Bool x X)
I'F fold [X.Unit +Bool x X] t; : uX.Unit +Bool x X

T-Fold-BoolList

Mkt : X pX. TIT
Ffold X.TI t; : pX. T

T-Fold

Generalizing the fold Operator

Mty : X pX TIT

T-Fold
MEfold X Tty :puX. T ©

Example (Boolean Lists)

BoolList = puX.Unit +Bool x X

nil = fold [X.Unit +Bool x X] (inl unit)
cons ty t = fold [X.Unit +Bool x X] (inr {t;,t,})

Example (Natural Numbers]

Nat = puX.Unit + X

0 = fold [X.Unit + X] (inl unit)
succ t = fold [X.Unit + X] (inr t)

Recursive Types

The types we worked on so far (e.g., BoolList and Nat) are recursive types.

Every value of a recursive type is the folding of a value of the unfolding of the recursive type.

Nt : X=X TT

T-Fold
MEfold X Tty :pX. T *

Solving the Type Equation

Let [T] be the set of values of type T, e.g., [Unit] = {unit}, [Bool] = {true, false}.
Consider BoolList. The solution [X] to the equation X = Unit + Bool x X should satisfy:

[X] = {inl unit} U {inr {v;,v2} v € [Bool], v, € [X]}

Principle

Recursive types denote the solutions to type equations.

Unifying Elimination Forms for A Type

Remark

Recall that elimination forms destruct values of a certain type.

For the type uX. T, the operator fold [X. T] can be thought of as a function with type [X — uX. TIT — uX.T.
e Boolean lists: fold [X.Unit +Bool x X] : Unit +Bool x BoolList — Boollist
e Natural numbers: fold [X.Unit + X] : Unit + Nat — Nat

Principle

Elimination forms are the inverse of introduction forms.
e Boolean lists: the elimination form has type BoolList — Unit +Bool x BoolList.
e Natural numbers: the elimination form has type Nat — Unit + Nat

In general, the elimination forms have type pX. T — [X s pX. T]T.

Unifying Elimination Forms for A Type
Principle

For the type uX. T, its elimination form has type uX. T — [X 5 pX. T]T.
MEty: X = pX. TIT
TF fold X. Tl ty : uX. T

. Fhty:pX. T
° I unfold X.T] t; : [X — uX. TIT

T-Unfold

Example (Boolean Lists)

'ty :Boollist e el
I unfold [X.Unit 4 Bool x X] t; : Unit + Bool x BoolList = oo-°

isnil t = case unfold [X.Unit +Bool x X] t of inl x; = true | inr x, = false
head t = case unfold [X.Unit +Bool x X] t of inl x; = error |inr x; = x;,.1
tail t = case unfold [X.Unit +Bool x X] t of inl x; = error | inr x; = x,.2

Unifying Elimination Forms for A Type

Principle

For the type uX. T, its elimination form has type uX. T — [X +— pX. TIT.

Mty : X pX. TIT Tkty:pX. T
T-Fold T-Unfold
Mfold [X. Tty : uX. T I'~unfold [X.T] t; : X — uX. T]T

Example (Natural Numbers)

'kt :Nat
I' - unfold [X.Unit + X] t; : Unit + Nat

T-Unfold-Nat

iszero t = case unfold [X.Unit + X] t of inl x; = true | inr x, = false
pred t = case unfold [X.Unit + X] t of inl xy = 0] inr x; = x»

The Iso-Recursive Approach
unfold[X. T]

/\

uX. T X uX. TIT

_/

fold[X.T]

e [X — uX.TIT is the one-step unfolding of uX. T.
e The pair of functions unfold[X. T] and fold[X. T] are witness functions for isomorphism.

Use the iso-recursive approach to formulate a type for binary trees containing a Boolean in each internal node.

0Caml uses iso-recursive types (by default). Where are the fold's and unfold's?

Examples of Recursive Types

Remark

We have studied tuples and variants.
e Tuples: {T,i€1.-n}
e Variants: <1; : T;*€1---m>

Example

Let us revisit Boolean lists and natural numbers.

BoolList = uX.<nil: Unit, cons : {Bool, X}>
Nat = uX.<zero: Unit, succ : X>

Lists with Natural-Number Elements
NatList = pX. <nil:Unit, cons:{Nat,X}>;

nil = fold [NatList] <nil=unit>;

» nil : Natlist

cons = An:Nat. Al:NatList. fold [NatList] <cons={n,1}>;
» cons : Nat — NatList — Natlist

isnil = Al:NatList. case unfold [NatList] 1 of <nil=u> = true | <cons=p> = false;
» isnil : NatList — Bool

head = Al:NatList. case unfold [NatList] 1 of <nil=u> = error | <cons=p> = p.1;
» head : NatlList — Nat

tail = Al:NatList. case unfold [NatList] 1 of <nil=u> = error | <cons=p> = p.2;
» tail : NatList — NatList

sumlist = fix (As:NatList—Nat. Al:NatList.

if isnil 1 then 8 else plus (head 1) (s (tail 1)));
» sumlist : NatList — Nat

Hungry Functions

Hungry Functions

A hungry function accepts any number of arguments and always return a new function that is hungry for more.
Hungry = pA. Nat—A;

f = fix (Af:Nat—Hungry. An:Nat. fold [Hungry] f);
» f : Nat—Hungry

f o,
» fold [Hungry] <fun> : Hungry

unfold [Hungry] (f 8);
» <fun> : Nat—Hungry

unfold [Hungry] (unfold [Hungry] (f 6) 1) 2;
» fold [Hungry] <fun> : Hungry

Streams

Streams

A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.
Stream = uA. Unit—{Nat,A};

head = As:Stream. (unfold [Stream] s unit).1;
» head : Stream — Nat

tail = As:Stream. (unfold [Stream] s unit).2;
» tail : Stream — Stream

upfrom@ = fix (Af:Nat—Stream. An:Nat. fold [Stream] (A_:Unit. {n,f (succ n)})) 8;
» upfrom@ : Stream

Define a stream that yields successive elements of the Fibonacci sequence (1,1,2, 3,5, 8,13,...).

Streams

fib = fix (Af:Nat—Nat—Stream. Aa:Nat. Ab:Nat.
fold [Stream] (A_:Unit. {a,f b (plus a b)})) 1 1;
» fib : Stream;

head fib;

» 1 : Nat

head (tail (tail (tail fib)));

» 3 : Nat

head (tail (tail (tail (tail (tail (tail fib))))));
» 13 : Nat

Processes

A process accepts a value and returns a value and a new process.
Process = uA. Nat—{Nat,A}

Objects

Purely Functional Objects
An object accepts a message and returns a response to that message and a new object if mutated.

Counter = uC. {get:Nat, inc:Unit—C, dec:Unit—C};

cl = let create = fix (Af:{x:Nat}—Counter. As:{x:Nat}.
fold [Counter]
{get = s.x,
inc = A_:Unit. f {x=succ(s.x)},
dec = A_:Unit. f {x=pred(s.x)} })

in create {x=0};
» cl : Counter

c2 = (unfold [Counter] cl).inc unit;
» c2 : Counter

(unfold [Counter] c2).get;

» 1 : Nat

Divergence

Remark
Recall omega from untyped lambda-calculus:

omega = (Ax. x x) (Ax. x x)
We have omega — omega — omega —s ..., i.e., omega diverges.

Suppose we want to type x : Ty - x x : T for a given T. We obtain a type equation:
Tx=Tx—>T
Thus Ty can be defined as pA. A — T.

Well-Typed Divergence

Divy = pA. AT,
omegay = (Ax:Divy. unfold [Divy] x x) (fold [Divy] (Ax:Divy. unfold [Divy] x x));
» omegar : [

Recursive types break the strong-normalization property (c.f., Chapter 12) without using fixed points!

Recursion

Remark

Recall the Y operator from untyped lambda-calculus:

Y=xf. 3x. £ (xx)) (Ax. £ (x %))
For any f, the operator satisfies Y f —* f ((Ax.f (x x)) (Ax.f (xx))) =g f (Y f).

Can we give Y a type using recursive types?

Yy = Af:ToT.

(Ax:Divy. f (unfold [Divy] x x)) (fold [Divy] (Ax:Divy. f (unfold [Divy] x x)));
» Y (T=T) = T

Implement Y1 in 0Caml. Does it really work as a fixed-point operator? Why? How to make it work?
Show your solution is effective by using it to define a factorial function.

Untyped Lambda-Calculus

We can embed the whole untyped lambda-calculus into a statically typed language with recursive types.
D = uX. X=X;

lam = Af:D—D. fold [D] f;
» lam : (D—D) —» D

ap = Af:D. Aa:D. unfold [D] f a;
»ap:D—-D —D

Let M be a closed untyped lambda-term. We can embed M, written M*, as an element of D.
o

(Ax.M)*

(MN)*

X
lam (Ax:D. M*)
ap M* N*

Formulation of Iso-Recursive Types (A1)

Syntactic Forms

tz=...|fold [X.T] t |unfold [X.T] t vi=...|fold [X.T] v To=...| X|puX. T

Typing and Evaluation Rules

ety : X=X T ety uX T

T-Fold T-Unfold
TEfold X. Tyl by - pX. Ty © Funfold X. Tyl 4y : (X = pX.)Ty 0
E-UnfoldFold
unfold XS] (Fold [Y. Tl vy) —s vy 000
t —t] t —t]
- E-Fold - E-Unfold

fold [X.T] t; — fold [X.T] t] unfold [X. T] t; — unfold [X. T] t;

Another Approach to Recursive Types

Let us revisit the question: what is the relation between the type uX. T and its one-step unfolding [X — uX. TIT?
NatList ~ <nil:Unit, cons: {Nat,NatList}>

NatList as An Infinite Tree

<nil: , cons: >

AN
Unit {,
P
Nat <nil: , cons: >
/
Unit {,
P

Nat <nil: , cons:_>

Unit

Another Approach to Recursive Types

NatList ~ <nil:Unit, cons: {Nat,NatList}>

The Iso-Recursive Approach

e Take a recursive type and its unfolding as different, but isomorphic.

e This approach is notationally heavier, requiring programs to be decorated with fold and unfold instructions
wherever recursive types are used.

The Equi-Recursive Approach

e Take these two type expressions as definitionally equal—interchangeable in all contexts—because they stand
for the same infinite tree.

e This approach is more intuitive, but places stronger demands on the type-checker.

Lists under Equi-Recursive Types

NatList = pX. <nil:Unit, cons:{Nat,X}>;

nil = <nil=unit> as NatLlist;

» nil : NatList

cons = An:Nat. Al:NatList. <cons={n,1}> as NatList;
» cons : Nat — NatList — NatList

isnil = Al:NatList. case 1 of <nil=u> = true | <cons=p> = false;
» isnil : Natlist — Bool

head = Al:NatList. case 1 of <nil=u> = error | <cons=p> = p.l;
» head : NatlList — Nat

tail = Al:NatList. case 1 of <nil=u> = error | <cons=p> = p.2;

Re-implement previous examples of iso-recursive types under equi-recursive types.

Recursive Types are Useless as Logics

Remark (Curry-Howard Correspondencel

In simply-typed lambda-calculus, we can interpret types as logical propositions (c.f., Chapter 9).

proposition P D Q type P — Q
proposition P A Q type P x Q
proposition PV Q type P+ Q
proposition P is provable type P is inhabited
proof of proposition P term t of type P

Recursive types are so powerful that the strong-normalization property is broken.

omegar = (Ax:(uA. A=T). x x) (Ax:(uA. A-T). x x);

» omegar : [
The fact that omegay is well-typed for every T means that every proposition in the logic is provable—that is, the
logic is inconsistent.

Restricting Recursive Types

Suppose that we are not allowed to use fixed points.
What kinds of recursive types can ensure strong-normalization? What kinds cannot?

Lists uX.<nil : Unit, cons : {Nat, X}>
Streams pA.Unit — {Nat, A}
Divergence pA. A — Nat
Untyped lambda-calculus puX. X = X

|t seems problematic for a recursive type to recurse in the contravariant positions.

x x N\

Positive Type Operators

X. T pos: “type operator X. T is positive”

X. Ty pos X. T, pos
X. X pos X.Unit pos X. Ty x T, pos

Ty type X. Ty pos

X. Ty — T, pos

Which of the following type operators are positive?
X.<nil : Unit, cons: {Nat, X}> A.Unit — {Nat, A}

X. Ty pos X. T, pos
X. Ty + T, pos

A.A—=Nat X. X=X

Inductive & Coinductive Types

Positive type operators can be used to build inductive and coinductive types.
Syntactic Forms

T:=...|X|ind(X.T) | coi(X.T) where X. T pos
to=...|fold [X.T] t|unfold [X.T] t

Remark (Solving the Type Equation)

Let [T] be the set of values of type T, e.g. [Unit] = {unit}, [Bool] = {true, false}.
Consider BoolList. The solution [X] to the equation X = Unit + Bool x X should satisfy:

[X] = {inl unit} u {inr {vy,v2} | v; € [Bool], v, € [X]}

Principle

Inductive types are the least solutions. For example, the least solution to X = Unit + X is isomorphic to IN.
Coinductive types are the greatest solutions.

Well-Founded Recursion for Inductive Types

How to compute the length of a Boolean list?
Can you do that without using fixed points?

Is there a way to allow useful recursion schemes on Boolean lists, without allowing general fixed points?

Principle (Structural Recursion)

The argument of a recursion function call can only be the sub-structures of the function parameter.

len t = case unfold [X.Unit +Bool x X] t of inl x; = 8 | inr x, = succ (len x,.2)
It is just iteration!

An Iteration Operator for Boolean Lists

Remark (Specialized Introduction Form)

I't; :Unit +Bool x BoolList

T-Fold-BoolList
I+ fold BoolList] t; : BoolList = o oom°

Principle (Structural Recursion via Iteration)

'kt :Boollist I x:Unit+Bool xSk t,:S

T-lter-BoolList
'+ iter [BoolList] t; withx.t,:S

E-lter-BoolList
iter Boollist] (fold Boollistlv) withx.t; —t

where
t’ = let x = case v of inl x; = inl x; |
inr x, = inr {x,.1, iter [BoolList] x,.2 with x.t,}
int,

An Iteration Operator for Boolean Lists

I'~1t; :Boollist I'x:Unit+Bool xSk t,:S

T-lter-BoolList
'+ iter Boollist] t; withx.t;:S er-booltis

Example

isnil t = iter [BoollList] t with x.case x of inl x; = true | inr x, = false
lent = iter [BoolList] t with x.case x of inl x; = 0| inr x, = succ x,.2

Write down the evaluation of 1en ¢, where:
¢, = fold [BoolList] (inr {true, ¢;})
¢; = fold [BoolList] (inr {false,¢x})
{o = fold [BoolList] (inl unit)

An Iteration Operator for Natural Numbers

Let us repeat the same development for the inductive type of natural numbers.

I+t :Unit+Nat

T-Fold-Nat
- fold Nat] t; :Nat = °

Now consider iteration over natural numbers.
Ik tq:Nat Mox:Unit+Skty:S

T-lter-Nat
I iter Nat] t; withx.t,:5 e

E-lter-Nat
iter Nat] (fold Nat] v) withx.t, —t/ — — ©

where
t’ = let x = case v of inl x; = inl x; |
inr x, = inr (iter [Nat] x, with x.t,)
int,

Generalizing the iter Operator

Can we inline the meaning of BoolList into iter?

Principle
Let us write iter [X.Unit + Bool x X] for iter [BoolList].

Ikt :ind(X.Unit 4+ Bool x X) I x:Unit+Bool xSkHt,:S
I iter [X.Unit +Bool x X] t; withx.t,:S

T-Iter-BoolList

'ty :ind(X. T) Fx:X—=SITEt;:S
Iiter [X.T] t; withx.t,:S

T-lter

Generalizing the iter Operator

Mty :1ind(X.T) Fox:[X—SITHt,:S
Iiter [X.T]t; withx.t,:S

T-lter

Principle
Let us write fold [X.Unit +Bool x X] for fold [BoolList].

Ikt :Unit +Bool x ind(X.Unit +Bool x X)
I'~fold [X.Unit +Bool x X] t; : ind(X.Unit +Bool x X)

T-Fold-BoolList

MFty: X ind(X. T)]T
I+ fold [X. T t; : ind(X. T)

T-Fold

What about the evaluation rules for iter?

Generalizing the iter Operator

Mty :1ind(X.T) Fx:[X—SITEt:S
Niter [X.T]t; withx.t,:S

T-lter

E-lter-BoolList
iter [X.Unit + Bool x X] (fold [X.Unit +Bool x X] v) withx.t, —s t/ 0"

where
t’ = let x = case v of inl x; = inl x; |
inr x, = inr {x,.1,iter [X.Unit +Bool x X] x,.2 with x.t>}
in t,

iter [X. T] (fold [X. T] v) with x. t; should replace every sub-structure vy}, of v that corresponds to an
occurrence of Xin T by iter [X. T] vg,p, with x. t;.

Generalizing the iter Operator

iter [X. T] (fold [X. T] v) with x. t; should replace every sub-structure vy}, of v that corresponds to an
occurrence of Xin T by iter [X. T] vg,p, with x. t;.

Principle

E-lter

iter [X.T] (fold [X. T] v) withx.t; — let x =map [X. T] vwithy. (iter [X. Ty withx.t;) int,

The operator map is defined inductively on the structure of the positive type operator.

E-Map-V. E-Map-Unit
map [X.X] vwithy.t; — [y — Vit apmer map [X.Unit] vwithy.t; — v P

E-Map-Prod
map [X.T; x To]vwithy.t, — {map [X. T;] v.1withy.t, map [X. To] v.2 withy.t,} i

Generalizing the iter Operator

Principle (Generic Mapping)

E-Map-V. E-Map-Unit
map [X. X]vwithy.t, — [y — vty P map [X.Unit] vwithy.t, — v P

E-Map-Prod
map [X.T; x To]vwithy.t, — {map [X. T;] v.1withy.t, map [X. To] v.2 withy.t,} ap-ro

- E-Map-S
map [X. Ty + o) vwithy.t, — t/ R

where
t’ = let x = case v of inl x; = inl (map [X. Tq] x; withy.t,) |
inr x, = inr (map X. T2] x» with y. 1)
in t,

Derive the evaluation rules E-Iter-BoolList and E-Iter-Nat from these more general rules.

Examples of Iteration for Inductive Types

NatList

ind(X. <nil:Unit, cons:{Nat,X}>);

Al:NatList. iter [NatList] 1
with x. case x of
<nil=u> = 0
| <cons=p> = plus p.1 p.2;

sumlist

» sumlist : NatList — Nat

append = All:NatlList. Al2:NatList.
iter [NatList] 11
with x. case x of
<nil=u> = 12
| <cons=p> = fold [NatList] <cons={p.1,p.2}>;
» append : NatList — NatlList — Natlist

Revisiting Streams

Streams

A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.
Stream = uA. Unit—{Nat,A};

upfrom@ = fix (Af:Nat—Stream. An:Nat. fold [Stream] (A_:Unit. {n,f (succ n)})) 8;
» upfromd : Stream

A stream is isomorphic to an infinite list.
Consider the solution [X] to the equation X = Nat x X. It should satisfy:

[[X]] = {il’lI‘ {V] Vo } |vy € [[Nat]],vz € [[X]]}

The least solution is just the empty set.
But the greatest solution is {inr {v;, inr {v,, inr (v3,...)}} | vi,v2,v3,... € [Nat]}, ie, the streams!

Well-Founded Recursion for Coinductive Types

What is the difference between the recursion schemes on inductive and coinductive types?

e Forinductive types (e.g. lists), we use recursion to iterate over them.

e For coinductive types (e.g., streams), we use recursion to generate them.

Recall the implementation of streams under general recursive types:
Stream = uA. Unit—{Nat,A};

upfrom@ = fix (Af:Nat—Stream. An:Nat. fold [Stream] (A_:Unit
» upfromd : Stream

Can we define a recursion scheme for generating values of coinductive types?

. {n,f (succ n)})) 0;

A Generation Operator for Streams

Remark (Specialized Elimination Form)

Let us consider the type of streams as the greatest solution to X = Nat x X.

Ity : Stream

T-Unfold-St
[unfold [Stream t; : Nat x Stream

Principle (Structural Recursion for Generation)

FEt:S Mx:Skt,:Nat x S
'+ gen [Stream] t; with x.t; : Stream

T-Gen-Stream

E-Gen-Stream

unfold [Stream] (gen [Stream] v with x.t;)
—)
letv, = (let x=vint,) in {v,.1, (gen [Stream| v,.2 with x.t,)}

A Generation Operator for Streams

NEty:S Mx:SkHt;:Nat xS

T-Gen-St
I~ gen [Stream] t; with x.t, : Stream en-Stream

Example

upfromd = gen [Stream] 8 with x. {x, succ x}
fib = gen [Stream] {1,1} with x. {x.1, {x.2, (plus x.1x.2)}}

Write down the evaluation of (unfold [Stream] t,).1 where:

| t

5> = (unfold [Stream] t;).2
(unfold [Stream] ty).2

o = (unfold [Stream] £fib).2

Generalizing the gen Operator

Can we inline the meaning of Stream (i.e, the greatest solution to X = Nat x X) into gen?

Principle
Let us write gen [X.Nat x X] for gen [Stream].

N-+t;:S MNx:Skt;:Nat xS
Ik gen [X.Nat x X] t; with x.t; : coi(X.Nat x X)

T-Gen-Stream

'Ety:S Fx:SkEt: [X—SIT
I'-gen [X.T] t; withx.t, : coi(X. T)

T-Gen

Generalizing the gen Operator

FEt1:S Tox:Skty: X ST
I'gen [X.T] t; withx.t; : coi(X. T)

T-Gen

Principle
Let us write unfold [X.Nat x X] for unfold [Stream].

I'F1t7:coi(X.Nat x X)
I'~unfold [X.Nat x X] t; : Nat x coi(X.Nat x X)

T-Unfold-Stream

M1ty :c0i(X.T)
I'tunfold [X.T] t7 : [X — coi(X.T)]T

T-Unfold

What about the evaluation rules for unfolding a gen?

Generalizing the gen Operator

FEt1:S Tox:Skty:[XesSIT

: - T-Gen
I'tgen [X.T] t; withx. t; : coi(X. T)

E-Gen-Stream

unfold [X.Nat x X] (gen [X.Nat x X] vwithx.t,)
H
letv, = (let x=vint,) in {v,.1, (gen [X.Nat x X] v,.2 with x.t,)}

unfold [X.T] (gen [X. T] v with x. t;) should substitute x with v in t;, obtain the result v, and replace every
sub-structure vy}, of v that corresponds to an occurrence of Xin T by gen [X. T] vg,, with x. t;.

Generalizing the gen Operator

unfold [X.T] (gen [X. T] v with x. t;) should substitute x with v in t;, obtain the result v;, and replace every
sub-structure vg,, of v; that corresponds to an occurrence of Xin T by gen [X. T] vg,p, with x. t;.
Principle

Recall that for any positive type operator X. T, the term map [X. T] v with y. t replaces every sub-structure v,
of v that corresponds to an occurrence of Xin T by [y +— vgplt.

E-G
unfold [X. T] (gen [X. T] v with x. t,) e

_>
map [X.T] (let x=v int;)withy. (gen [X. T]y with x.t,)

Derive the evaluation rule E-Gen-Stream from this more general rule.

Formulation of Inductive/Coinductive Types

Syntactic Forms

t:=...|fold[X. T]t|iter [X.T] twithx.t|unfold [X.T] t|gen [X.T] twithx.t,
vi=...|fold [X.T]v|gen [X.T]vwithx.t
T:=...|X|ind(X.T) | coi(X.T) where X. T pos

Remark

Inductive types are characterized by how to construct them (i.e, fold).
Coinductive types are characterized by how to destruct them (i.e., unfold).

Aside

Read more about inductive & coinductive types: N. P. Mendler. 1987. Recursive Types and Type Constraints in
Second-0rder Lambda Calculus. In Logic in Computer Science (LICS'87), 30-36.

Revisiting General Recursive Types

Solving the Type Equation

Let [T] be the set of values of type T, e.g. [Unit] = {unit}, [Bool] = {true, false}.
Consider BoolList. The solution [X] to the equation X = Unit + Bool x X should satisfy:

[X] = {inl unit} U {inr {v;,v2} v € [Bool], v, € [X]}

Does the definition mean least or greatest solution?

Principle (Types are NOT Sets)

For example, arrow types characterize computable functions, not arbitrary functions.

Otherwise, the equation X = X — X (with the understanding of partial functions) does not have a solution.
Formal (and unique) characterization of recursive types require domain theory: S. Abramsky and A. Jung. 1995.
Domain Theory. In Handbook of Logic in Computer Science (Vol. 3): Semantic Structures. Oxford University Press,
Inc. https://dl.acm.org/doi/10.5555/218742.218744.

https://dl.acm.org/doi/10.5555/218742.218744

Revisiting General Recursive Types

Eager Semantics

tu=...|fold [X.T] t|unfold [X.T] t vi=...|fold [X. T]v To=...| X|uX.T

E-UnfoldFold bt E-Fold
unfold [X.S] (Fold [V. Tl vq) —s vy foldX. T t; — fold X.TI ¢} *

Recursive types have an inductive flavor under eager semantics.
Coinductive analogues are accessible as well by using function types.
Lazy Semantics

to=...|fold [X.T] t |unfold [X.T] t vi=...|fold [X. T] t To=...| X uX.T

E-UnfoldFold
unfold (X. S| (Fold Y. T1 1) — t; no E-Fold

Recursive types have a coinductive flavor under lazy semantics.
However, the inductive analogues are inaccessible.

Subtyping

Can we deduce the relation below, given that Even <: Nat?

uX.Nat — (Even x X) <: uX.Even — (Nat x X)

=
_ -) RN
= ___:_>:_“:§1__‘ i =
Y N
Nat X o< <iBen X
ven oo o> Nat
A AN
Nat X < <: Even X

Review: Subtyping in Chapters 15 & 16

For brevity, we only consider three type constructors: —, x, and Top.

T:=Top|T—>T|TxT

Declarative Version

T] <:S1 Sz <: Tz S] <: T] Sz <: Tz
T<:T0p S1—2S<Th—>T S1xSy<:Ty xTy

S<:u u<:T
S<:S S<T

Algorithmic Version

>Ty <: S >S, <: Ty >S1 <t Ty >SS, <: Ty
>T <: Top >S$1 =S <T =T >S1 xSy <:Ty xTy

u-Types

Let X range over a fixed countable set {Xj, X3, ...} of type variables. The set of raw i-types is the set of
expressions defined by the following grammar (inductively):

Te=X|Top| T=T|TxT|uX.T

A raw p-type T is contractive (and called a -type) if, for any subexpression of T of the form
uXy. puXz. ... uXy. S, the body Sis not X.

How to extend the subtype relation to support p-types?

Subtyping on p-Types

An Attempt: p-Folding Rules

S<:[X uX.TIT X—uX.SIS<: T
S<:uX.T uX.S<: T

Do those rules work?
Try those rules to check if uX. Top x X <: uX. Top x (Top x X) holds.

Subtyping on p-Types

Example
LetS = uX.Top x Xand T = pX. Top x (Top x X).

Top <: Top S<T
TopxS<:TopxT
Top <: Top S<:TopxT
Top x S <: Top x (Top x T)
TopxS<:T
S<T

The inference works only if we consider the subtyping rules coinductively, i.e., consider the largest relation
generating by the subtyping rules.

Why?

S
= /’__f?i‘¢f31_5 =
LTI
Nat X B _<_:’__1<_:_ I_EYe_n R
YAy o
ven oo o> Nat
ONCTTTTTTRIAN
Nat X s sigml X
AT AN
Even Nat .

Principle

The subtype relation must consider types with structures like infinite trees.

Hypothetical Subtyping

Y S <: T: “one can derive S <: T by assuming the subtype factsin £

(S<:T)ekx YTy < S YESy < YES1 < T YESy <
2ES<T SHT<:Top SES =S <Ti— T IES1 xSy <y xTh
LS< X TES<: X uX.TT LuX.S < THXe—=uX.SIS<: T
TES<uX. T SFuX.S<T

Let S = uX.Top x Xand T = uX. Top x (Top x X).

(S<T)eS<T,...
... Top <: Top S<T,...S<T
S<:T,...-TopxS<:TopxT
...-Top <:Top S<T,...tS<:TopxT
S<:T,...-Top xS <:Top x (Top x T)
S<TrTopxS<:T
gFS<T

Why Does Hypothetical Subtyping Work?

Top <: Top S<T
TopxS<:TopxT
Top <: Top S<:TopxT
Top x S <: Top x (Top x T)
TopxS<:T
S<T

To check the original subtype relation S <: T between p-types, the set of reachable states S <: T” is finite.
See Chapter 21.9 for a detailed argument.

Why is hypothetical subtyping correct with respect to the original (coinductive) subtype relation?

Coinductive Subtyping

A generating function is a function F : P(U) — P(U) that is monotone, i.e, X C Y implies F(X) C F(Y).
Let F be monotone. A subset X of Wis a fixed point of Fif F(X) = X.
The least fixed point is written 1.F. The greatest fixed point is written vF.!

Subtype Relation
Let T denote the set of all u-types. Two p-types S and T are said to be in the subtype relation (*S is a subtype of
T7if (S, T) € vF4, where the monotone function Fg : P(Trm X Tm) — P(Tm x Tm) is defined as follows:
Fa(R) ={(T,Top) | T € Tm}
U{(S1 = S2,T1 = T2) | (T1,$1), (S2, T2) € R}
U{(S1 xS2, Ty xT2) | (S1,T1), (S2, T2) € R}
U{(S, kX.T) | (S, X+ uX. TIT) € RFU{(uX. S, T) | (X = puX. SIS, T) € R}

Their existence and uniqueness can be justified by the Knaster-Tarski Theorem.

Correctness of Hypothetical Subtyping

Lemma

Suppose X S <: Tand each S’ <: T’ in £ satisfies (S’, T') € vFq.
Then (S, T) € vFq.

Proof Sketch

By induction on the derivation of £ S <: T.
For p-folding rules, we need the fact that vF 4 is the greatest fixed point of Fq4.

Lemma
Suppose (S, T) € vFq. Theng - S <: T.

Proposition

Suppose X I S <: T does NOT hold and each S’ <: T’ in £ satisfies (S, T’) € vFq.
Then (S, T) & vF4.

Algorithmic Hypothetical Subtyping

Y S <:Tr> T/L: “onecan/cannot derive S <: T by assuming the subtype facts in £”
(S8, T1 = T)€x

(S<:T)€Z (T,Top)QZ SET <S> T IES, < THh>T
IES<:T>T SFET<:Top>T IS =S < =TT
($1 =82 Th =»T)¢gZX (S1 =82 Th =T)¢gzx
SFTy <S> L SEFTi<$1>T SES < T L
SES1—>S<Th—>Th L YEST =Sy < T —>To> L
(S, uX.T) &= (WX.S,T)¢L T#£Top T#puy.U
5,8 < uX.TFS <: [X— pX. TIT > ans T uX.S < TF[X— uX.SIS <: Tt ans
SES<:uX. Trans YFuX.S<:Trans
Proposition

Suppose Z - S <: T> L andeach S’ <: T’ in £ satisfies (S’, T’) € vFq. Then (S, T) & vFq.

Aside: Why is Coinductive Subtyping Actually Correct?

Atree type is a partial function T : {1, 2}* — {—, x, Top} satisfying the following constraints:
e T(e)is defined;
e if T(m, o) is defined then T () is defined;
e ifT(mt) = — or T(m) = x then T(m, 1) and T(m, 2) are defined;
e if T(mr) = Top then T(7, 1) and T(, 2) are undefined.

(Top x Top) — Top Top — (Top — (Top — ...))
N AN
\/X\\) Top Top yﬁ\\)

-

Top Top Top \/\)

Top

Aside: Why is Coinductive Subtyping Actually Correct?

Subtype Relation

Let T denote the set of all tree types. Two tree types S and T are said to be in the subtype relation (S is a subtype
of Tif (S, T) € vF, where the monotone function F : P(T x T) — P(T x T) is defined as follows:
F(R) ={(T,Top) I T € T}
U{(S1 = S2, i = T2) [(T1,$1),(S2, T2) € R}
U{(S1 xS2, Th xT2) [(S1,Th), (S2, T2) € R}

Principle

Under an equi-recursive setting, the subtype relation vF on possibly-infinite tree types is the desired relation.

Interpreting 1-Types as Possibly-Infinite Tree Types

The function treeof, mapping closed p-types to tree types, is defined inductively as follows:

treeof (Top)(e) = Top
treeof (T1 — Tz)(o) treeof (Ty — T2)(i,) = treeof (T;)(m)
treeof (Ty x T2)(e) = treeof (Ty x T2) (i,) = treeof (T;)(m)
treeof (uX. T)(7) = treeof (X = uX. TIT)(7)

Why is treeof well-defined?

Answer

Every recursive use of freeof on the right-hand side reduces the lexicographic size of the pair (|7|, u-feight(T)),
where p-height(T) is the number of of p-bindings at the front of T.

treeof (uX. ((X x Top) — X))

ST
NN
T
/\ z 2

Top

Aside: Why is Coinductive Subtyping Actually Correct?

Subtype Relation
Let T denote the set of all tree types. Two tree types S and T are said to be in the subtype relation (S is a subtype
of T)if (S, T) € VI, where the monotone function F : P(T x T) — P(T x T) is defined as follows:
F(R) ={(T,Top) I T € T}
U{(S1 = S2,Th = T2) [(T1,$1),(S2, T2) € R}
U{(S1 xS2, Th xT2) [(S1,Th), (52, T2) € R}

Theorem

Recall that F is the generating function for the subtype relation on p-types.
Let (S, T) € Tm x Tm. Then (S, T) € vFq if and only if (treeof (S), treeof (T)) € VF.

Homework

e Implement Y7 (shown on Slide 23) in OCaml. Does it really work as a fixed-point operator? Why?
e How to make it work? Show your solution is effective by using it to define a factorial function.

e Formulate your solution with explicit fold's and unfold's. You may check your solution using the
fullisorec checker.

