

Design Principles of Programming Languages 编程语言的设计原理

Haiyan Zhao, Di Wang 赵海燕,王迪

Peking University, Spring Term 2024

Design Principles of Programming Languages, Spring 2024 1

Recursive Types 递归类型

Design Principles of Programming Languages, Spring 2024 2

Review: Lists Defined in Chapter 11

List T describes finite-length lists whose elements are of type T.

Syntactic Forms

 $t := ... |\text{nil}[T]| \text{cons}[T] t | \text{isnil}[T] t | \text{head}[T] t | \text{tail}[T] t$ $v := \ldots |\text{nil}[T]| \text{cons}[T] v v$ $T := \ldots \sqcup List$

Typing Rules

$$
\frac{\Gamma \vdash t_1 : List\ T_1}{\Gamma \vdash \texttt{inil}[T_1]: List\ T_1} \text{ T-Nil} \qquad \frac{\Gamma \vdash t_1 : T_1 \qquad \Gamma \vdash t_2 : List\ T_1}{\Gamma \vdash \texttt{cons}[T_1] \ t_1 \ t_2 : List\ T_1} \text{ T-Cons}
$$
\n
$$
\frac{\Gamma \vdash t_1 : List\ T_1 \vdash t_1 : List\ T_1 \vdash t_2 : List\ T_1 \vdash t_2 : List\ T_1 \vdash t_1 : List\ T_1 \vdash t_1
$$

BoolList**: A Specialized Version**

BoolList describes finite-length lists whose elements are of Booleans.

Syntactic Forms

```
t := ... \mid \text{nil} \mid \text{cons } t \mid \text{isnil } t \mid \text{head } t \mid \text{tail } tv := \ldots |\text{nil}| \text{cons } vT := ... | BoolList
```
Typing Rules

$$
\cfrac{\Gamma\vdash t_1:BoolList}{\Gamma\vdash \text{t}_1:BoolList}\text{ T-Nil}\qquad \qquad \cfrac{\Gamma\vdash t_1:Bool}{\Gamma\vdash \text{cons }t_1\;t_2:BoolList}\text{ T-Cons}\\ \cfrac{\Gamma\vdash t_1:BoolList}{\Gamma\vdash \text{isnil }t_1:Bool}\qquad \qquad \cfrac{\Gamma\vdash t_1:BoolList}{\Gamma\vdash \text{head }t_1:Bool}\text{ T-Head}\qquad \qquad \cfrac{\Gamma\vdash t_1:BoolList}{\Gamma\vdash \text{tail }t_1:BoolList}\text{ T-Tail}
$$

Review: Natural Numbers Defined in Chapter 8

Nat describes natural numbers.

Syntactic Forms

 $t := ... | \theta |$ succ t | iszero t | pred t $v := \ldots \mid \theta \mid$ succ v $T := \ldots \mid Nat$

Typing Rules

$$
\frac{\Gamma \vdash t_1 : \text{Nat}}{\Gamma \vdash \text{succ } t_1 : \text{Nat}} \text{ T-Succ}
$$
\n
$$
\frac{\Gamma \vdash t_1 : \text{Nat}}{\Gamma \vdash \text{succ } t_1 : \text{Nat}} \text{ T-Succ}
$$
\n
$$
\frac{\Gamma \vdash t_1 : \text{Nat}}{\Gamma \vdash \text{pred } t_1 : \text{Nat}} \text{ T-Pred}
$$

Similarity between Lists and Natural Numbers

Question

Do you notice that the **structures** and **rules** for lists and natural numbers are very similar?

Introduction Forms

Terms that **introduce** (or **construct**) values of a certain type.

- Boolean lists: nil and cons t t
- Natural numbers: **0** and succ t

Elimination Forms

Terms that **eliminate** (or **destruct**) values of a certain type. They tell us how to **use** those values.

- *•* Boolean lists: isnil t, head t, and tail t
- *•* Natural numbers: iszero t and pred t

Unifying Introduction Forms for A Type

It would be useful to unify multiple introduction forms into a single one.

Boolean Lists

A Boolean list is either (i) an empty list nil, or (ii) a cons list of a Boolean and a Boolean list.

Γ *`* t¹ : Unit + Bool *×* BoolList ^Γ *`* fold [BoolList] ^t¹ : BoolList T-Fold-BoolList

We use **sum types** to unify multiple possibilities. That is, Unit stands for case i and Bool *×* BoolList stands for case ii.

Remark (Sum Types)

$$
\begin{array}{c|c|c} \hline \Gamma \vdash t_1 : T_1 & \Gamma \vdash t_1 : T_2 \\ \hline \Gamma \vdash \text{inl } t_1 : T_1 + T_2 & T\text{-Inl} \\ \hline \Gamma \vdash t_0 : T_1 + T_2 & \Gamma, x_1 : T_1 \vdash t_1 : T & \Gamma, x_2 : T_2 \vdash t_2 : T \\ \hline \Gamma \vdash \text{case } t_0 \text{ of } \text{inl } x_1 \Rightarrow t_1 \mid \text{inr } x_2 \Rightarrow t_2 : T \\ \hline \end{array} \text{ T-Case}
$$

Design Principles of Programming Languages, Spring 2024 8

Unifying Introduction Forms for A Type

Natural Numbers

A natural number is either (i) zero 0, or (ii) a succ of a natural number.

Γ *`* t¹ : Unit + Nat ^Γ *`* fold [Nat] ^t¹ : Nat T-Fold-Nat

Similarly, Unit stands for case i and Nat stands for case ii.

Example

0 *≡* fold [Nat] (inl unit) succ $t \equiv$ fold [Nat] (inr t) nil *≡* fold [BoolList] (inl unit) cons t₁ t₂ \equiv fold [BoolList] (inr {t₁, t₂})

Generalizing the fold **Operator**

Question

Can we **inline** the meaning of BoolList into fold?

Recursion Operator μ

We can think of BoolList as a type satisfying the equation BoolList $=$ Unit $+$ Bool \times BoolList. Abstractly, it is a solution to the equation $X = \text{Unit} + \text{Bool} \times X$. Let us denote it by μX . Unit $+ \text{Bool} \times X$.

Principle

```
Let us write fold [X. Unit + Bool \times X] for fold [BoolList].
```
 $\Gamma \vdash t_1 : \text{Unit} + \text{Bool} \times (\mu \text{X}.\text{Unit} + \text{Bool} \times \text{X})$ Γ *`* fold [X. Unit + Bool *×* X] t¹ : µX. Unit + Bool *×* X T-Fold-BoolList

> $\Gamma \vdash t_1 : [X \mapsto \mu X. \top]$ T $\Gamma \vdash \textsf{fold}$ $[X,T]$ $t_1 : \mu X$. T

Generalizing the fold **Operator**

 $\Gamma \vdash t_1 : [X \mapsto \mu X. \top]$ T $\overline{\Gamma \vdash \texttt{fold} \; [X,T] \; t_1 : \mu X. T}$ T-Fold

Example (Boolean Lists)

BoolList $\equiv \mu X$. Unit + Bool $\times X$ $nil \equiv$ fold $[X.$ Unit + Bool \times X $|$ (inl unit) cons t_1 $t_2 \equiv$ fold $[X$. Unit + Bool \times X $|$ (inr $\{t_1, t_2\}|$)

Example (Natural Numbers)

Nat $\equiv \mu X$. Unit + X $\theta \equiv$ fold $[X$. Unit + X $|$ (inl unit) succ $t \equiv$ fold $[X.$ Unit $+ X$ (inr t)

Recursive Types

The types we worked on so far (e.g., BoolList and Nat) are **recursive** types.

Observation

Every value of a recursive type is the **folding** of a value of the **unfolding** of the recursive type.

 $\Gamma \vdash t_1 : [X \mapsto \mu X. \top]$ T $\overline{\Gamma \vdash \texttt{fold} \; [X,T] \; \texttt{t}_1 : \mu X.T}$ T-Fold

Solving the Type Equation

Let $\llbracket T \rrbracket$ be the set of values of type T, e.g., $\llbracket \text{Unit} \rrbracket = \{\text{unit}\}, \llbracket \text{Bool} \rrbracket = \{\text{true}, \text{false}\}.$ Consider BoolList. The solution $\|X\|$ to the equation $X = \text{Unit} + \text{Bool} \times X$ should satisfy: $\llbracket X \rrbracket \cong \{ \text{inl unit} \} \cup \{ \text{inr } \{v_1, v_2\} \mid v_1 \in \llbracket \text{Bool} \rrbracket, v_2 \in \llbracket X \rrbracket \}$

Principle

Recursive types denote the solutions to type equations.

Unifying Elimination Forms for A Type

Remark

Recall that elimination forms **destruct** values of a certain type.

Observation

For the type μX . T, the operator fold [X. T] can be thought of as a function with type $[X \mapsto \mu X$. T. μX . T.

- *•* Boolean lists: fold [X. Unit + Bool *×* X] : Unit + Bool *×* BoolList *→* BoolList
- *•* Natural numbers: fold [X. Unit + X] : Unit + Nat *→* Nat

Principle

Elimination forms are the **inverse** of introduction forms.

- *•* Boolean lists: the elimination form has type BoolList *→* Unit + Bool *×* BoolList.
- *•* Natural numbers: the elimination form has type Nat *→* Unit + Nat

In general, the elimination forms have type μX . $T \rightarrow [X \mapsto \mu X]$. T

Unifying Elimination Forms for A Type

Principle

For the type μX . T, its elimination form has type μX . T \rightarrow $[X \mapsto \mu X$. T $]T$.

 $\Gamma \vdash t_1 : [X \mapsto \mu X. \top]$ T $\overline{\Gamma \vdash \text{fold } [X, T] \ t_1 : \mu X. T}$ T-Fold $\Gamma \vdash t_1 : \mu X.$ T $\overline{\Gamma \vdash \text{unfold}(X.\,T]}$ t₁ : $[X \mapsto \mu X.\,T]$ T^{-Unfold}

Example (Boolean Lists)

Γ *`* t¹ : BoolList ^Γ *`* unfold [X. Unit ⁺ Bool *[×]* ^X] ^t¹ : Unit ⁺ Bool *[×]* BoolList T-Unfold-BoolList

isnil t \equiv case unfold $[X.$ Unit + Bool \times X t of inl x_1 \Rightarrow true | inr x_2 \Rightarrow false head t \equiv case unfold $[X$. Unit + Bool \times X t of inl $x_1 \Rightarrow$ error $|\text{ inv } x_2 \Rightarrow x_2$.1 tail t \equiv case unfold $[X.$ Unit + Bool \times X t of inl $x_1 \Rightarrow$ error $|\text{ inv } x_2 \Rightarrow x_2.2$

Unifying Elimination Forms for A Type

Principle

For the type μX . T, its elimination form has type μX . T \rightarrow $[X \mapsto \mu X$. T]T.

$$
\dfrac{\Gamma\vdash t_1:[X\mapsto \mu X.\,T]T}{\Gamma\vdash \text{fold }[X.\,T]\,\,t_1\,:\, \mu X.\,T}\,\, \text{T-Fold}\qquad \qquad \dfrac{\Gamma\vdash t_1\,:\, \mu X.\,T}{\Gamma\vdash \text{unfold }[X.\,T]\,\,t_1\,:\, [X\mapsto \mu X.\,T]T}\,\, \text{T-Unfold }[X\mapsto \text{Tr}(X)\mapsto \text{Tr}(X)\,\, \text{T}\mapsto \text{Tr}(X
$$

Example (Natural Numbers)

 $\Gamma \vdash t_1 : \texttt{Nat}$ $\Gamma \vdash \mathsf{unfold}$ $[X.$ Unit $+$ X] t_1 : Unit $+$ Nat $\overline{}$ T-Unfold-Nat

iszero t = case unfold $[X.$ Unit + X t of inl $x_1 \Rightarrow$ true | inr $x_2 \Rightarrow$ false pred t = case unfold $[X.$ Unit + X t of inl $x_1 \Rightarrow \emptyset$ | inr $x_2 \Rightarrow x_2$

- $[X \mapsto \mu X$. T *T* is the one-step unfolding of μX . T.
- The pair of functions $unfold[X, T]$ and $fold[X, T]$ are witness functions for isomorphism.

Question

Use the iso-recursive approach to formulate a type for binary trees containing a Boolean in each internal node.

Question

OCaml uses iso-recursive types (by default). Where are the fold's and unfold's?

Design Principles of Programming Languages, Spring 2024

Examples of Recursive Types

Remark

We have studied **tuples** and **variants**.

- *•* Tuples: {T_i^{*i∈*1...n}}
- Variants: <l_i : T_i^{i∈1}…ⁿ>

Example

Let us revisit Boolean lists and natural numbers.

```
BoolList \equiv \mu X \cdot \text{snil}: Unit, cons : {Bool, X}>
       Nat \equiv \mu X <zero : Unit, succ : X>
```
Lists with Natural-Number Elements

```
NatList = \mu X. <nil:Unit, cons: {Nat, X}>;
```

```
nil = fold [NatList] <nil=unit>;
▶ nil : NatList
cons = \lambdan:Nat. \lambdal:NatList. fold [NatList] <cons=\{n,1\}>;
▶ cons : Nat → NatList → NatList
```

```
isnil = \lambda1:NatList. case unfold [NatList] 1 of \langlenil=u> \Rightarrow true | \langlecons=p> \Rightarrow false;
▶ isnil : NatList → Bool
head = \lambda1:NatList. case unfold [NatList] 1 of <nil=u> \Rightarrow error | <cons=p> \Rightarrow p.1;
▶ head : NatList → Nat
tail = \lambda1:NatList. case unfold [NatList] 1 of <nil=u> \Rightarrow error | <cons=p> \Rightarrow p.2;
▶ tail : NatList → NatList
```

```
sumlist = fix (λ s:NatList→Nat. λ l:NatList.
                 if isnil 1 then 0 else plus (head 1) (s (tail 1)));
▶ sumlist : NatList → Nat
```
Hungry Functions

Hungry Functions

A hungry function accepts any number of arguments and always return a new function that is hungry for more.

```
Hungry = µA. Nat→A;
f = fix (λ f:Nat→Hungry. λ n:Nat. fold [Hungry] f);
▶ f : Nat→Hungry
f 0;
▶ fold [Hungry] <fun> : Hungry
unfold [Hungry] (f 0);
▶ <fun> : Nat→Hungry
unfold [Hungry] (unfold [Hungry] (f 0) 1) 2;
▶ fold [Hungry] <fun> : Hungry
```


Streams

A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.

```
Stream = µA. Unit→{Nat,A};
head = \lambda s:Stream. (unfold [Stream] s unit).1;
▶ head : Stream → Nat
tail = λ s:Stream. (unfold [Stream] s unit).2;
▶ tail : Stream → Stream
```
upfrom0 = **fix** (λ f:Nat*→*Stream. λ n:Nat. **fold** [Stream] (λ _:Unit. {n,f (succ n)})) 0; ▶ upfrom0 : Stream

Question

Define a stream that yields successive elements of the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, . . .).

Design Principles of Programming Languages, Spring 2024 19 and 2024 19 and 2021 19 and 202

Streams


```
fib = fix (λ f:Nat→Nat→Stream. λ a:Nat. λ b:Nat.
                     fold [Stream] (\lambda : Unit. \{a, f\} b (plus a b)\}) 1 1;
\blacktriangleright fib : Stream;
head fib;
\blacktriangleright 1 : Nat.
head (tail (tail (tail fib)));
\triangleright 3 : Nat.
head (tail (tail (tail (tail (tail (tail fib))))));
\blacktriangleright 13 : Nat.
```
Processes

A process accepts a value and returns a value and a new process.

```
Process = µA. Nat→{Nat,A}
```
Objects

Purely Functional Objects

An object accepts a message and returns a response to that message and **a new object** if mutated.

```
Counter = µC. {get:Nat, inc:Unit→C, dec:Unit→C};
c1 = let create = fix (\lambda f: \{x:Nat\} \rightarrow Counter. \lambda s: \{x:Nat\}).fold [Counter]
                                   \{get = s.x,
                                     inc = \lambda_:Unit. f {x=succ(s.x)}.
                                    dec = \lambda_:Unit. f {x=pred(s.x)} })
      in create {x=0};
\blacktriangleright c1 : Counter
c2 = (unfold [Counter] c1).inc unit;
\blacktriangleright c2 : Counter
(unfold [Counter] c2).get;
\blacktriangleright 1 : Nat.
```
Divergence

Remark

Recall omega from untyped lambda-calculus:

```
omega = (\lambda x. x x) (\lambda x. x x)We have omega −→ omega −→ omega −→ . . ., i.e., omega diverges.
```
Suppose we want to type $x : T_x \vdash x \cdot x : T$ for a given T. We obtain a type equation:

$$
T_{\mathbf{x}}=T_{\mathbf{x}}\rightarrow T
$$

Thus T_x can be defined as μ A. A \rightarrow T.

Well-Typed Divergence

Div_T = μ A. A→T: ω omega_T = $(\lambda x:\text{Div}_T, \text{unfold}$ [Div_T] x x) (**fold** [Div_T] $(\lambda x:\text{Div}_T, \text{unfold}$ [Div_T] x x)); \blacktriangleright omega_T : T

Recursive types break the **strong-normalization** property (c.f., Chapter 12) **without** using fixed points!

Recursion

Remark

Recall the Y operator from untyped lambda-calculus:

```
Y = \lambda f. (\lambda x. f (x x)) (\lambda x. f (x x))
```
For any f, the operator satisfies Y f \longrightarrow^* f $((\lambda x.f(xx))(\lambda x.f(xx))) =_{\beta} f(Yf)$.

Question

Can we give Y a type using recursive types?

```
Y_T = \lambda f : T \rightarrow T.
        (\lambda x:Div_T. f (\text{unfold } [Div_T] \times x)) (\text{fold } [Div_T] (\lambda x:Div_T \cdot f \cdot (\text{unfold } [Div_T] \times x)));
▶ YT : (T→T) → T
```
Question (Homework)

Implement ${\tt Y_T}$ in OCaml. Does it really work as a fixed-point operator? Why? How to make it work? Show your solution is effective by using it to define a factorial function.

Untyped Lambda-Calculus

We can embed the whole untyped lambda-calculus into a statically typed language with recursive types.

 $D = \mu X \quad X \rightarrow X$;

lam = λ f:D \rightarrow D. **fold** [D] f; ▶ lam : (D*→*D) *→* D

ap = λ f:D. λ a:D. **unfold** [D] f a; ▶ ap : D *→* D *→* D

Let M be a closed untyped lambda-term. We can embed M, written M*, as an element of <mark>D</mark>.

 $x^* = x$ $(\lambda x.M)^* = \text{lam}(\lambda x \text{:}D.M^*)$ $(M N)^* = ap M^* N^*$

Formulation of Iso-Recursive Types (λµ**)**

Syntactic Forms

 $t := \dots |$ fold $[X, T]$ t | unfold $[X, T]$ t v := $\dots |$ fold $[X, T]$ v $T := \dots |$ $X |$ μX . T

Typing and Evaluation Rules

 $\Gamma \vdash t_1 : [X \mapsto \mu X. T_1]T_1$ $\overline{\Gamma \vdash \textsf{fold} \ [X.\ T_1] \ t_1 : \mu X.\ T_1}$ T-Fold $\Gamma \vdash t_1 : \mu X. T_1$ $\frac{1}{\Gamma \vdash \text{unfold } [X.\ T_1] \t_1 : [X \mapsto \mu X.\ T_1] T_1}$ ^T-∪nfold unfold [X. S] (fold [Y. T] v1) *−→* v¹ E-UnfoldFold

$$
\frac{t_1 \longrightarrow t_1'}{\text{fold }[X,T] \ t_1 \longrightarrow \text{fold }[X,T] \ t_1'} \ \text{E-fold} \qquad \qquad \frac{t_1 \longrightarrow t_1'}{\text{unfold }[X,T] \ t_1 \longrightarrow \text{unfold }[X,T] \ t_1'} \ \text{E-Unfold}
$$

Another Approach to Recursive Types

Question

Let us revisit the question: what is the relation between the type μX . T and its one-step unfolding $[X \mapsto \mu X$. T]T?

NatList ∼ <nil : Unit, cons : {Nat, NatList}>

Another Approach to Recursive Types

NatList ∼ <nil : Unit, cons : {Nat, NatList}>

The Iso-Recursive Approach

- *•* Take a recursive type and its unfolding as **different, but isomorphic**.
- *•* This approach is notationally heavier, requiring programs to be decorated with fold and unfold instructions wherever recursive types are used.

The Equi-Recursive Approach

- *•* Take these two type expressions as definitionally equal—**interchangeable in all contexts**—because they stand for the same **infinite tree**.
- *•* This approach is more intuitive, but places stronger demands on the type-checker.

Lists under Equi-Recursive Types


```
NatList = \mu X. <nil:Unit, cons: {Nat.X}>:
```

```
nil = <nil=unit> as NatList;
▶ nil : NatList
cons = λ n:Nat. λ l:NatList. <cons={n,l}> as NatList;
▶ cons : Nat → NatList → NatList
isnil = \lambda1:NatList. case 1 of \langlenil=u> \Rightarrow true | \langlecons=p> \Rightarrow false;
▶ isnil : NatList → Bool
head = \lambda 1:NatList. case 1 of \langlenil=u> \Rightarrow error | \langlecons=p> \Rightarrow p.1;
▶ head : NatList → Nat
tail = \lambda 1:NatList. case 1 of \langle \text{nil=u} \rangle \Rightarrow \text{error} | \langle \text{cons=p} \rangle \Rightarrow p.2;
```
Question

Re-implement previous examples of iso-recursive types under equi-recursive types.

Recursive Types are Useless as Logics

Remark (Curry-Howard Correspondence)

In simply-typed lambda-calculus, we can interpret types as logical propositions (c.f., Chapter 9).

proposition P *⊃* Q type P \rightarrow Q
proposition P \land Q type P \times Q proposition P ∧ Q type P \times Q
proposition P \vee Q proposition $P \vee Q$ proposition P is provable type P is inhabited proof of proposition P term t of type P

Observation

Recursive types are so powerful that the strong-normalization property is broken.

$$
\text{omega}_{T} = (\lambda x: (\mu A. A \rightarrow T). x x) (\lambda x: (\mu A. A \rightarrow T). x x);
$$

 \blacktriangleright omega_T : T

The fact that <mark>omega_T is well-typed for every T means that **every proposition in the logic is provable**—that is, the</mark> logic is inconsistent.

Restricting Recursive Types

Question

Suppose that we are not allowed to use fixed points. What kinds of recursive types can ensure strong-normalization? What kinds cannot?

Observation

It seems problematic for a recursive type to recurse in the **contravariant** positions.

Positive Type Operators

Question

Which of the following type operators are positive?

X. <nil : Unit, cons : {Nat, X}> A. Unit *→* {Nat, A} A. A *→* Nat X. X *→* X

Inductive & Coinductive Types

Positive type operators can be used to build **inductive** and **coinductive** types.

Syntactic Forms

 $T := ... |X| \text{ind}(X, T) | \text{coi}(X, T)$ where X. T pos $t := ...$ | fold $[X, T]$ t | unfold $[X, T]$ t

Remark (Solving the Type Equation)

Let $\llbracket T \rrbracket$ be the set of values of type T, e.g., $\llbracket \text{Unit} \rrbracket = \{\text{unit}\}, \llbracket \text{Bool} \rrbracket = \{\text{true}, \text{false}\}.$ Consider BoolList. The solution $\|X\|$ to the equation $X = \text{Unit} + \text{Bool} \times X$ should satisfy:

 $\llbracket X \rrbracket \cong \{ \text{inl unit} \} \cup \{ \text{inr } \{v_1, v_2\} \mid v_1 \in \llbracket \text{Bool} \rrbracket, v_2 \in \llbracket X \rrbracket \}$

Principle

Inductive types are the least solutions. For example, the least solution to $X = \text{Unit} + X$ is isomorphic to \mathbb{N} . Coinductive types are the **greatest** solutions.

Design Principles of Programming Languages, Spring 2024 32

Well-Founded Recursion for Inductive Types

Question

How to compute the length of a Boolean list? Can you do that **without** using fixed points?

Question

Is there a way to allow **useful** recursion schemes on Boolean lists, without allowing general fixed points?

Principle (Structural Recursion)

The argument of a recursion function call can only be the **sub-structures** of the function parameter.

len t = case unfold $[X.$ Unit + Bool $\times X$ t of inl $x_1 \Rightarrow 0$ | inr $x_2 \Rightarrow$ succ (len x_2 .2)

It is just **iteration**!

An Iteration Operator for Boolean Lists

Remark (Specialized Introduction Form)

Γ *`* t¹ : Unit + Bool *×* BoolList ^Γ *`* fold [BoolList] ^t¹ : BoolList T-Fold-BoolList

Principle (Structural Recursion via Iteration)

$$
\frac{\Gamma \vdash t_1 : \text{BoolList} \qquad \Gamma, x : \text{Unit} + \text{Bool} \times S \vdash t_2 : S}{\Gamma \vdash \textbf{iter} \text{ (BoolList)} t_1 \text{ with } x. t_2 : S} \text{ T-Iter-BoolList}
$$

iter [BoolList] (fold [BoolList] v) **with** x. t² *−→* t *′* E-Iter-BoolList

where

$$
t' \equiv \textbf{let} \ x = \text{case} \ v \text{ of } \text{inl} \ x_1 \Rightarrow \text{inl} \ x_1 \mid
$$

$$
\text{inr} \ x_2 \Rightarrow \text{inr} \ \{x_2.1, \textbf{iter} \ [\text{BoolList}] \ x_2.2 \ \textbf{with} \ x. \ t_2 \}
$$

An Iteration Operator for Boolean Lists

$$
\frac{\Gamma\vdash t_1: \text{BoolList} \qquad \Gamma, x: \text{Unit} + \text{Bool} \times S \vdash t_2: S}{\Gamma\vdash \textbf{iter}~[\text{BoolList}]~t_1~\textbf{with}~x.~t_2: S}~\text{T-Iter-BoolList}
$$

Example

isnil t \equiv **iter** [BoolList] t with x. case x of inl x_1 \Rightarrow true | inr x_2 \Rightarrow false len t \equiv **iter** [BoolList] t **with** x. case x of inl $x_1 \Rightarrow \emptyset$ | inr $x_2 \Rightarrow$ succ x_2 .2

Question

Write down the evaluation of len ℓ_2 where:

```
\ell_2 \equiv fold [BoolList] (inr {true, \ell_1})
\ell_1 \equiv fold [BoolList] (inr {false, \ell_0})
\ell_0 \equiv fold [BoolList] (inl unit)
```
An Iteration Operator for Natural Numbers

Let us repeat the same development for the inductive type of natural numbers.

Γ *`* t¹ : Unit + Nat ^Γ *`* fold [Nat] ^t¹ : Nat T-Fold-Nat

Now consider **iteration** over natural numbers.

$$
\frac{\Gamma \vdash t_1 : Nat \qquad \Gamma, x : Unit + S \vdash t_2 : S}{\Gamma \vdash \textbf{iter} [\text{Nat}] t_1 \textbf{ with } x. t_2 : S} \text{ T-Iter-Nat}
$$
\n
$$
\textbf{iter} [\text{Nat}] (\textbf{fold} [\text{Nat}] v) \textbf{with } x. t_2 \longrightarrow t' \text{ E-Iter-Nat}
$$

where

$$
t' \equiv \text{let } x = \text{case } v \text{ of } \text{inl } x_1 \Rightarrow \text{inl } x_1 \mid
$$

\n $\text{inr } x_2 \Rightarrow \text{inr } (\text{iter } [\text{Nat}] x_2 \text{ with } x, t_2)$
\n $\text{in } t_2$

Question

Can we **inline** the meaning of BoolList into **iter**?

Principle

Let us write **iter** $[X$. Unit + Bool \times X] for **iter** [BoolList].

Γ *`* t¹ : ind(X. Unit + Bool *×* X) Γ , x : Unit + Bool *×* S *`* t² : S T-Iter-BoolList $\Gamma \vdash$ **iter** $\lbrack X \rbrack$ Unit + Bool \times X \lbrack t₁ with $x. t_2 : S$ $\Gamma \vdash t_1 : \text{ind}(X, T) \qquad \Gamma, x : [X \mapsto S] \top \vdash t_2 : S$ $\Gamma \vdash \textbf{iter}$ [X. T] t_1 **with** x. $t_2 : S$ T-Iter

$$
\frac{\Gamma \vdash t_1 : \text{ind}(X. T) \qquad \Gamma, x : [X \mapsto S]T \vdash t_2 : S}{\Gamma \vdash \textbf{iter} [X. T] t_1 \textbf{ with } x. t_2 : S} \text{ T-lter}
$$

Principle

Let us write fold $[X.$ Unit + Bool \times X] for fold [BoolList].

 $\Gamma \vdash t_1 : \text{Unit} + \text{Bool} \times \text{ind}(X. \text{Unit} + \text{Bool} \times X)$ Γ *`* fold [X. Unit + Bool *×* X] t¹ : ind(X. Unit + Bool *×* X) T-Fold-BoolList

> $\Gamma \vdash t_1 : [X \mapsto \text{ind}(X, T)]$ T $\overline{\Gamma \vdash \text{fold } [X, T] \t_1 : \text{ind}(X, T)}$ T-Fold

Question

What about the evaluation rules for **iter**?

Design Principles of Programming Languages, Spring 2024 38

$$
\frac{\Gamma \vdash t_1:ind(X.T) \qquad \Gamma, x: [X \mapsto S]T \vdash t_2: S}{\Gamma \vdash \textbf{iter} [X.T] t_1 \textbf{ with } x. t_2: S} \text{ T-lter}
$$

 $\overline{\textbf{iter} \; [\text{X}.\text{Unit} + \text{Bool} \times \text{X}]} \; (\text{fold} \; [\text{X}.\text{Unit} + \text{Bool} \times \text{X}] \; \text{v)} \; \textbf{with} \; \text{x.}\; \text{t}_2 \longrightarrow \text{t'} \; }^{\text{E-lter-BoolList}}$

where

$$
\begin{aligned} \mathsf{t}' \equiv \textbf{let}\ x = \text{case}\ v\ \text{of}\ \text{inl}\ x_1 \Rightarrow \text{inl}\ x_1 \mid \\ & \hspace{10mm} \text{inr}\ x_2 \Rightarrow \text{inr}\ \{x_2.1, \textbf{iter}\ [X. \text{Unit} + \text{Bool} \times X] \ x_2.2 \ \textbf{with}\ x.\ t_2 \} \\ & \hspace{10mm} \textbf{in}\ t_2 \end{aligned}
$$

Observation

iter [X. T] (fold [X. T] v) **with** x. t₂ should replace every sub-structure v_{sub} of v that corresponds to an occurrence of X in T by **iter** $[X, T]$ v_{sub} with x. t₂.

Observation

iter [X. T] (fold [X. T] v) **with** x. t₂ should replace every sub-structure v_{sub} of v that corresponds to an occurrence of X in T by **iter** $[X, T]$ v_{sub} with x, t_2 .

Principle

iter $[X, T]$ (fold $[X, T]$ v) with $x, t_2 \rightarrow$ **let** $x =$ **map** $[X, T]$ v with y.(**iter** $[X, T]$ y with x, t_2) **in** t_2

The operator **map** is defined **inductively** on the structure of the **positive** type operator.

map [X. X] v with y. t ₂ \longrightarrow [y \mapsto v]t ₂	E-Map-Var	map [X. Unit] v with y. t ₂ \longrightarrow v	E-Map-Unit
map [X. T ₁ × T ₂] v with y. t ₂ \longrightarrow {map [X. T ₁] v.1 with y. t ₂ , map [X. T ₂] v.2 with y. t ₂ } E-Map-Prod			

E-Iter

Principle (Generic Mapping)

map [X. X] v with y. t ₂ \longrightarrow [y \mapsto v]t ₂ \longrightarrow E-Map-Var	map [X. Unit] v with y. t ₂ \longrightarrow v	E-Map-Unit
map [X. T ₁ × T ₂] v with y. t ₂ \longrightarrow {map [X. T ₁] v.1 with y. t ₂ , map [X. T ₂] v.2 with y. t ₂ } \longrightarrow E-Map-Prod		
map [X. T ₁ + T ₂] v with y. t ₂ \longrightarrow t' \longrightarrow E-Map-Sum		
here	t' = let x = case v of in1 x ₁ \Rightarrow in1 (map [X. T ₁] x ₁ with y. t ₂) in r x ₂ \Rightarrow inr (map [X. T ₂] x ₂ with y. t ₂)	

Question

 w

Derive the evaluation rules E-Iter-BoolList and E-Iter-Nat from these more general rules.

Design Principles of Programming Languages, Spring 2024 41

Examples of Iteration for Inductive Types


```
NatList = ind(X. \text{ <ii!:Unit, cons:} \{Nat, X\});
sumlist = λ l:NatList. iter [NatList] l
                              with x. case x of
                                          <nil=u> ⇒ 0
                                        | <cons=p> ⇒ plus p.1 p.2;
▶ sumlist : NatList → Nat
append = \lambda11:NatList. \lambda12:NatList.
             iter [NatList] l1
               with x. case x of
                            <nil=u> ⇒ l2
                         | \langle \text{cons-p>}\Rightarrow \text{fold} [NatList] \langle \text{cons-}\{p.1,p.2\}\rangle;
▶ append : NatList → NatList → NatList
```
Revisiting Streams

Streams

A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.

```
Stream = µA. Unit→{Nat,A};
```

```
upfrom0 = fix (λ f:Nat→Stream. λ n:Nat. fold [Stream] (λ _:Unit. {n,f (succ n)})) 0;
▶ upfrom0 : Stream
```
Observation

A stream is isomorphic to an **infinite** list. Consider the solution $\|X\|$ to the equation $X = \text{Nat} \times X$. It should satisfy:

```
\llbracket X \rrbracket \cong \{ \text{inr } \{v_1, v_2\} \mid v_1 \in \llbracket \text{Nat} \rrbracket, v_2 \in \llbracket X \rrbracket \}
```
The **least** solution is just the empty set. But the **greatest** solution is $\{\inf \{v_1, \inf \{v_2, \inf \langle v_3, \ldots \rangle\}\} \mid v_1, v_2, v_3, \ldots \in [\![\mathbb{N}\mathbf{at}]\!]\},$ i.e., the streams!

Well-Founded Recursion for Coinductive Types

Question

What is the difference between the recursion schemes on inductive and coinductive types?

Observation

- *•* For inductive types (e.g., lists), we use recursion to **iterate** over them.
- *•* For coinductive types (e.g., streams), we use recursion to **generate** them.

Question

Recall the implementation of streams under general recursive types:

```
Stream = µA. Unit→{Nat,A};
```
upfrom0 = **fix** (λ f:Nat*→*Stream. λ n:Nat. **fold** [Stream] (λ _:Unit. {n,f (succ n)})) 0;

▶ upfrom0 : Stream

Can we define a recursion scheme for **generating** values of coinductive types?

A Generation Operator for Streams

Remark (Specialized Elimination Form)

Let us consider the type of streams as the greatest solution to $X = Nat \times X$.

Γ *`* t¹ : Stream ^Γ *`* unfold [Stream] ^t¹ : Nat *[×]* Stream T-Unfold-Stream

Principle (Structural Recursion for Generation)

$$
\frac{\Gamma \vdash t_1 : S \qquad \Gamma, x : S \vdash t_2 : Nat \times S}{\Gamma \vdash \text{gen [Stream] } t_1 \text{ with } x.t_2 : Stream} \text{ T-Gen-Stream}
$$

unfold $[Stream]$ (**gen** $[Stream]$ ν **with** $x.t₂$)

−→ **let** $v_2 = (\textbf{let } x = v \textbf{ in } t_2) \textbf{ in } \{v_2.1, (\textbf{gen } [\text{Stream}] \ v_2.2 \textbf{ with } x.t_2)\}$

E-Gen-Stream

A Generation Operator for Streams

$$
\frac{\Gamma \vdash t_1 : S \qquad \Gamma, x : S \vdash t_2 : \texttt{Nat} \times S}{\Gamma \vdash \texttt{gen [Stream]} t_1 \text{ with } x.t_2 : \texttt{Stream}} \text{ T-Gen-Stream}
$$

Example

 $upfrom\theta \equiv \text{gen}$ [Stream] θ with x. {x, succ x} fib \equiv **gen** [Stream] $\{1, 1\}$ **with** x. $\{x.1, \{x.2, (\text{plus } x.1 \times 2)\}\}$

Question

Write down the evaluation of (unfold $[Strean]$ t₂).1 where:

 $t_2 \equiv$ (unfold [Stream] t_1).2 $t_1 \equiv$ (unfold [Stream] t_0).2 $t_0 \equiv$ (unfold [Stream] fib).2

Question

Can we **inline** the meaning of Stream (i.e., the greatest solution to $X = Nat \times X$) into gen?

Principle

Let us write **gen** $[X. Nat \times X]$ for **gen** [Stream].

$$
\cfrac{\Gamma\vdash t_1:S\qquad \Gamma,x:S\vdash t_2:Nat\times S}{\Gamma\vdash \text{gen }[X,Mat\times X]}\,t_1\,\text{with}\,x.\,t_2:\text{coi}(X,Mat\times X)}\, \text{T-Gen-Stream}\\[5mm] \cfrac{\Gamma\vdash t_1:S\qquad \Gamma,x:S\vdash t_2:[X\mapsto S]\top}{\Gamma\vdash \text{gen }[X,T]}\,t_1\,\text{with}\,x.\,t_2:\text{coi}(X,T)}\, \text{T-Gen}
$$

$$
\frac{\Gamma \vdash t_1 : S \qquad \Gamma, x : S \vdash t_2 : [X \mapsto S]T}{\Gamma \vdash \text{gen} [X, T] t_1 \text{ with } x. t_2 : \text{coi}(X, T)} \text{ T-Gen}
$$

Principle

Let us write unfold $[X. Nat \times X]$ for unfold [Stream].

 $\Gamma \vdash t_1 : \text{coi}(X. \, \text{Nat} \times X)$ $\Gamma \vdash \overline{\text{unfold}}$ $\overline{[X. \text{Nat} \times X] \ t_1 : \text{Nat} \times \text{coi}(X. \text{Nat} \times X)}$ T-Unfold-Stream $\Gamma \vdash t_1 : \text{coi}(X, T)$ Γ *`* unfold [X. T] t¹ : [X *7→* coi(X. T)]T T-Unfold

Question

What about the evaluation rules for unfolding a **gen**?

$$
\frac{\Gamma \vdash t_1 : S \qquad \Gamma, x : S \vdash t_2 : [X \mapsto S]T}{\Gamma \vdash \text{gen} [X, T] t_1 \text{ with } x. t_2 : \text{coi}(X, T)} \text{ T-Gen}
$$

unfold $[X. Nat \times X]$ (gen $[X. Nat \times X]$ v with $x.t_2$) *−→* **let** $v_2 = (\textbf{let } x = v \textbf{ in } t_2) \textbf{ in } \{v_2.1, (\textbf{gen } [X. \text{Nat } \times X] \ v_2.2 \textbf{ with } x.t_2)\}\$ E-Gen-Stream

Observation

unfold [X. T] (gen [X. T] v with x. t₂) should substitute x with v in t₂, obtain the result v_2 , and replace every sub-structure v_{sub} of v_2 that corresponds to an occurrence of X in T by **gen** [X. T] v_{sub} with x. t₂.

Observation

unfold $[X, T]$ (gen $[X, T]$ v with x, t_2) should substitute x with v in t_2 , obtain the result v_2 , and replace every sub-structure v_{sub} of v_2 that corresponds to an occurrence of X in T by **gen** [X, T] v_{sub} **with** x, t₂.

Principle

Recall that for any **positive** type operator X. T, the term **map** [X. T] v **with** y. t replaces every sub-structure v_{sub} of *v* that corresponds to an occurrence of X in T by $[y \mapsto v_{sub}]t$.

$$
\begin{array}{c}\n\hline\n\text{unfold } [X, T] \text{ (gen } [X, T] \vee \textbf{with } x, t_2) \\
\longrightarrow \\
\hline\n\text{map } [X, T] \text{ (let } x = v \text{ in } t_2) \text{ with } y. \text{ (gen } [X, T] \text{ y with } x, t_2)\n\end{array}
$$
\nE-Gen

Question

Derive the evaluation rule E-Gen-Stream from this more general rule.

Design Principles of Programming Languages, Spring 2024 50

Formulation of Inductive/Coinductive Types

Syntactic Forms

 $t := \ldots$ | fold $[X, T]$ t | **iter** $[X, T]$ t **with** x, t | unfold $[X, T]$ t | **gen** $[X, T]$ t **with** x, t₂ $v := ... |$ fold $[X, T]$ $v |$ **gen** $[X, T]$ v **with** x . t $T := ... |X| \text{ind}(X, T) | \text{coi}(X, T)$ where X. T pos

Remark

Inductive types are characterized by how to **construct** them (i.e., fold). Coinductive types are characterized by how to **destruct** them (i.e., unfold).

Aside

Read more about inductive & coinductive types: N. P. Mendler. 1987. Recursive Types and Type Constraints in Second-Order Lambda Calculus. In Logic in Computer Science (LICS'87), 30-36.

Revisiting General Recursive Types

Solving the Type Equation

Let $\llbracket T \rrbracket$ be the set of values of type T, e.g., $\llbracket \text{Unit} \rrbracket = \{\text{unit}\}, \llbracket \text{Bool} \rrbracket = \{\text{true}, \text{false}\}.$ Consider BoolList. The solution $\llbracket X \rrbracket$ to the equation $X = \text{Unit} + \text{Bool} \times X$ should satisfy:

 $\llbracket X \rrbracket \cong \{ \text{inl unit} \} \cup \{ \text{inr } \{v_1, v_2\} \mid v_1 \in \llbracket \text{Bool} \rrbracket, v_2 \in \llbracket X \rrbracket \}$

Question

Does the definition mean **least** or **greatest** solution?

Principle (Types are NOT Sets)

For example, arrow types characterize **computable** functions, not **arbitrary** functions. Otherwise, the equation $X = X \rightarrow X$ (with the understanding of **partial** functions) does not have a solution. Formal (and unique) characterization of recursive types require **domain theory**: S. Abramsky and A. Jung. 1995. Domain Theory. In Handbook of Logic in Computer Science (Vol. 3): Semantic Structures. Oxford University Press, Inc. https://dl.acm.org/doi/10.5555/218742.218744.

Revisiting General Recursive Types

E-Fold

Eager Semantics

 $t := \dots |$ fold $[X, T]$ t | unfold $[X, T]$ t v ::= $\dots |$ fold $[X, T]$ v $T := \dots |$ $X |$ μX . T

unfold [X. S] (fold [Y. T] v1) *−→* v¹ E-UnfoldFold

fold $[X, T]$ t₁ \longrightarrow fold $[X, T]$ t[']₁ Recursive types have an **inductive** flavor under eager semantics. Coinductive analogues are accessible as well by using function types.

Lazy Semantics

 $t := ... |$ fold $[X, T]$ t $|$ unfold $[X, T]$ t $v := ... |$ fold $[X, T]$ t $T := ... |X|$ μX . T

unfold [X. S] (fold [Y. T] t1) *−→* t¹ E-UnfoldFold

no E-Fold

 $t_1 \longrightarrow t'_1$

Recursive types have a **coinductive** flavor under lazy semantics. However, the inductive analogues are inaccessible.

Subtyping

Can we deduce the relation below, given that $Even <: Nat?$

 μ X. Nat \rightarrow (Even \times X) \lt : μ X. Even \rightarrow (Nat \times X)

Review: Subtyping in Chapters 15 & 16

For brevity, we only consider three type constructors: *→*, *×*, and Top.

 $T \coloneqq Top | T \rightarrow T | T \times T$

Declarative Version $T <: Top$ $T_1 <: S_1$ $S_2 <: T_2$ $S_1 \rightarrow S_2 \lt: T_1 \rightarrow T_2$ $S_1 <: T_1 \quad S_2 <: T_2$ $S_1 \times S_2 \lt: T_1 \times T_2$ $\overline{S \leq S}$ $S <: U$ $U < I$ $S \lt: I$

Algorithmic Version

$$
\dfrac{\rhd T_1 \lhd : S_1 \qquad \rhd S_2 \lhd : T_2}{\rhd S_1 \rightarrow S_2 \lhd : T_1 \rightarrow T_2} \qquad \qquad \dfrac{\rhd S_1 \lhd : T_1 \qquad \rhd S_2 \lhd : T_2}{\rhd S_1 \times S_2 \lhd : T_1 \times T_2}
$$

Definition

Let X range over a fixed countable set $\{X_1, X_2, \ldots\}$ of type variables. The set of **raw** μ -types is the set of expressions defined by the following grammar (inductively):

 $T := X | Top | T \rightarrow T | T \times T | uX. T$

Definition

A raw µ-type T is **contractive** (and called a µ**-type**) if, for any subexpression of T of the form μX_1 . μX_2 μX_n . S, the body S is not X.

Question

How to extend the subtype relation to support μ -types?

Subtyping on µ**-Types**

An Attempt: µ-Folding Rules

$$
\frac{S <: [X \mapsto \mu X.\ T]T}{S <: \mu X.\ T}
$$

 $[X \mapsto \mu X. S]$ S <: T $\mu X. S < I$

Question

Do those rules work? Try those rules to check if μX . Top $\times X$ \lt : μX . Top \times (Top \times X) holds.

Subtyping on µ**-Types**

Example

Let $S \equiv \mu X$. Top $\times X$ and $T \equiv \mu X$. Top \times (Top $\times X$).

.

Observation

The inference works only if we consider the subtyping rules **coinductively**, i.e., consider the **largest** relation generating by the subtyping rules.

Design Principles of Programming Languages, Spring 2024 58

Why?

Principle

The subtype relation must consider types with structures like **infinite trees**.

Hypothetical Subtyping

 $\Sigma \vdash S \lt: T$: "one can derive $S \lt: T$ by assuming the subtype facts in Σ "

Let $S \equiv \mu X$. Top $\times X$ and $T \equiv \mu X$. Top \times (Top $\times X$).

. . . *`* Top <: Top . . . *`* Top <: Top (S <: T) *∈* S <: T, . . . S <: T, . . . *`* S <: T S <: T, . . . *`* Top *×* S <: Top *×* T S <: T, . . . *`* S <: Top *×* T S <: T, . . . *`* Top *×* S <: Top *×* (Top *×* T) S <: T *`* Top *×* S <: T ∅ *`* S <: T

Why Does Hypothetical Subtyping Work?

Observation (Termination)

To check the original subtype relation S <: T between µ-types, the set of reachable states S *′* <: T *′* is **finite**. See Chapter 21.9 for a detailed argument.

Question (Correctness)

Why is hypothetical subtyping correct with respect to the original (coinductive) subtype relation?

Design Principles of Programming Languages, Spring 2024 61

Coinductive Subtyping

Definition (Generating Functions)

A generating function is a function F : $\mathcal{P}(U) \rightarrow \mathcal{P}(U)$ that is **monotone**, i.e., $X \subseteq Y$ implies F(X) \subseteq F(Y). Let F be monotone. A subset X of U is a **fixed point** of F if $F(X) = X$. The **least** fixed point is written µF. The **greatest** fixed point is written νF. 1

Subtype Relation

Let T^m denote the set of all µ-types. Two µ-types S and T are said to be in the **subtype relation** ("S is a subtype of T") if (S, T) \in \vee F_d, where the monotone function F_d: $\mathcal{P}(\mathcal{T}_m \times \mathcal{T}_m) \to \mathcal{P}(\mathcal{T}_m \times \mathcal{T}_m)$ is defined as follows:

```
F_A(R) \equiv \{(T, Top) \mid T \in \mathcal{T}_m\}\cup {(S<sub>1</sub> → S<sub>2</sub>, T<sub>1</sub> → T<sub>2</sub>) | (T<sub>1</sub>, S<sub>1</sub>), (S<sub>2</sub>, T<sub>2</sub>) \in R}
               ∪ {(S_1 \times S_2, T_1 \times T_2) | (S_1, T_1), (S_2, T_2) \in R}
               ∪ {(S, μX. T) | (S, [X \mapsto μX. T|T) \in R} ∪ {(μX. S, T) | ([X \mapsto μX. S]S, T) \in R}
```
¹Their existence and uniqueness can be justified by the Knaster-Tarski Theorem.

Correctness of Hypothetical Subtyping

Lemma

 $\textsf{Suppose}~\Sigma \vdash \textsf{S} \mathrel{<:} \textsf{T}$ and each $\textsf{S}' \mathrel{<:} \textsf{T}'$ in Σ satisfies $(\textsf{S}',\textsf{T}') \in \textsf{vF}_\textsf{d}.$ Then $(S, T) \in \nu F_d$.

Proof Sketch

By induction on the derivation of $\Sigma \vdash S \lt: \top$. For μ -folding rules, we need the fact that vF_d is the greatest fixed point of F_d .

Lemma

Suppose $(S, T) \in \nu F_d$. Then $\emptyset \vdash S \lt: T$.

Proposition

 $\textsf{Suppose}~\Sigma\vdash\textsf{S} <: \textsf{T}$ does **NOT** hold and each S' <: T' in Σ satisfies (S', T') ∈ νF_d.
— Then $(S, T) \notin \nu F_d$.

Design Principles of Programming Languages, Spring 2024 63

Algorithmic Hypothetical Subtyping

 $\Sigma \vdash S \lt I \rhd \top / \bot$: "one can/cannot derive $S \lt I$. T by assuming the subtype facts in Σ "

Proposition

 $\mathsf{Suppose}\ \Sigma\vdash\mathsf{S}\mathbin{<:}\ \mathsf{T}\vartriangleright\bot$ and each $\mathsf{S}'\mathbin{<:}\ \mathsf{T}'$ in Σ satisfies $(\mathsf{S}',\mathsf{T}')\in\mathsf{vF}_\mathsf{d}$. Then $(\mathsf{S},\mathsf{T})\not\in\mathsf{vF}_\mathsf{d}$.

Design Principles of Programming Languages, Spring 2024 64

Aside: Why is Coinductive Subtyping Actually Correct?

Definition

A **tree type** is a partial function T : {1, 2} *[∗] ⇀* {*→*, *×*, Top} satisfying the following constraints:

- *•* T(*•*) is defined;
- if $T(\pi, \sigma)$ is defined then $T(\pi)$ is defined;
- if $T(\pi) = \rightarrow$ or $T(\pi) = \times$ then $T(\pi, 1)$ and $T(\pi, 2)$ are defined;
- if $T(\pi) = Top$ then $T(\pi, 1)$ and $T(\pi, 2)$ are undefined.

Aside: Why is Coinductive Subtyping Actually Correct?

Subtype Relation

Let T denote the set of all tree types. Two tree types S and T are said to be in the **subtype relation** ("S is a subtype of T") if (S, T) *∈* νF, where the monotone function F : P(T *×* T) *→* P(T *×* T) is defined as follows:

> $F(R) \equiv \{(T, Top) \mid T \in \mathcal{T}\}$ \cup { $(S_1 \rightarrow S_2, T_1 \rightarrow T_2)$ | $(T_1, S_1), (S_2, T_2) \in R$ } *∪* {(S₁ × S₂, T₁ × T₂) | (S₁, T₁), (S₂, T₂) ∈ R}

Principle

Under an equi-recursive setting, the subtype relation vF on possibly-infinite tree types is the desired relation.

Interpreting µ**-Types as Possibly-Infinite Tree Types**

The function *treeof*, mapping closed µ-types to tree types, is defined inductively as follows:

 $treeof(Top)(\bullet) \equiv Top$ $treeof(T_1 \rightarrow T_2)(\bullet) \equiv \rightarrow$ $treeof(T_1 \rightarrow T_2)(i, \pi) \equiv treeof(T_i)(\pi)$ $treeof(T_1 \times T_2)(\bullet) \equiv \times$ $treeof(T_1 \times T_2)(i, \pi) \equiv treeof(T_i)(\pi)$ $treeof(\mu X.\ T)(\pi) \equiv treeof([X \mapsto \mu X.\ T]T)(\pi)$

Question

Why is *treeof* well-defined?

Answer

Every recursive use of *treeof* on the right-hand side reduces the lexicographic size of the pair (|π|, µ-*height*(T)), where µ-*height*(T) is the number of of µ-bindings at the front of T.

treeof(μ X. (($X \times Top$) \rightarrow X))

Aside: Why is Coinductive Subtyping Actually Correct?

Subtype Relation

Let T denote the set of all tree types. Two tree types S and T are said to be in the **subtype relation** ("S is a subtype of T") if (S, T) *∈* νF, where the monotone function F : P(T *×* T) *→* P(T *×* T) is defined as follows:

```
F(R) \equiv \{(T, Top) \mid T \in \mathcal{T}\}\cup {(S_1 \rightarrow S_2, T_1 \rightarrow T_2) | (T_1, S_1), (S_2, T_2) \in R}
           U {(S_1 \times S_2, T_1 \times T_2) | (S_1, T_1), (S_2, T_2) \in R}
```
Theorem

Recall that F_d is the generating function for the subtype relation on μ -types. Let $(S, T) \in \mathcal{T}_m \times \mathcal{T}_m$. Then $(S, T) \in \nu F_d$ if and only if $(treeof(S), treeof(T)) \in \nu F$.

Homework

Question

- \bullet Implement ${\tt Y_T}$ (shown on Slide 23) in OCaml. Does it really work as a fixed-point operator? Why?
- *•* How to make it work? Show your solution is effective by using it to define a factorial function.
- Formulate your solution with explicit fold's and unfold's. You may check your solution using the fullisorec checker.