
Design Principles of Programming Languages
编程语言的设计原理

Haiyan Zhao, Di Wang
赵海燕，王迪

Peking University, Spring Term 2024

Design Principles of Programming Languages, Spring 2024 1

Type Inference
类型推导

Design Principles of Programming Languages, Spring 2024 2

Type Erasure & Inference for System F

erase(x) def
= x

erase(λx:T1. t2)
def
= λx. erase(t2)

erase(t1 t2)
def
= erase(t1) erase(t2)

erase(λX. t2)
def
= erase(t2)

erase(t1 [T2])
def
= erase(t1)

Definition (Type Inference)
Given an untyped termm, whether we can find some well-typed term t such that erase(t) = m.

Theorem (Wells, 19941)
Type inference for System F is undecidable.

1J. B. Wells. 1994. Typability and Type Checking in the Second-Orderλ-Calculus Are Equivalent and Undecidable. In Logic in Computer Science (LICS’94), 176–185. DOI: 10.1109/LICS.1994.316068.
Design Principles of Programming Languages, Spring 2024 3

https://doi.org/10.1109/LICS.1994.316068

Partial Erasure & Inference for System F

erasep(x)
def
= x

erasep(λx:T1. t2)
def
= λx:T1. erasep(t2)

erasep(t1 t2)
def
= erasep(t1) erasep(t2)

erasep(λX. t2)
def
= λX. erasep(t2)

erasep(t1 [T2])
def
= erasep(t1) []

Theorem (Boehm 19852, 19893)
It is undecidable whether, given a closed term s in which type applications are marked but the arguments are
omitted, there is some well-typed System-F term t such that erasep(t) = s.

2H.-J. Boehm. 1985. Partial Polymorphic Type Inference is Undecidable. In Symp. on Foundations of Computer Science (SFCS’85), 339–345. DOI: 10.1109/SFCS.1985.44.
3H.-J. Boehm. 1989. Type Inference in the Presence of Type Abstraction. In Prog. Lang. Design and Impl. (PLDI’89), 192–206. DOI: 10.1145/73141.74835.

Design Principles of Programming Languages, Spring 2024 4

https://doi.org/10.1109/SFCS.1985.44
https://doi.org/10.1145/73141.74835

Fragments of System F
Prenex Polymorphism

• Type variables range only over quantifier-free types (monotypes).
• Quantified types (polytypes) are not allows to appear on the left-hand sides of arrows.

Rank-2 Polymorphism
A type is said to be of rank 2 if no path from its root to a ∀ quantifier passes to the left of 2 or more arrows.

(∀X.X → X) → Nat 3
Nat → ((∀X.X → X) → (Nat → Nat)) 3

((∀X.X → X) → Nat) → Nat 7

Remark
Prenex polymorphism is a predicative and rank-1 fragment of System F.
Type inference for ranks 2 and lower is decidable!
Design Principles of Programming Languages, Spring 2024 5

Simply-Typed Lambda-Calculus with Type Variables

Syntax

t ::= x | λx:T . t | t t | . . .
v ::= λx:T . t | . . .
T ::= X | T → T | . . .

Γ ::= ∅ | Γ , x : T

Typing

x : T ∈ Γ

Γ ` x : T
T-Var

Γ , x : T1 ` t2 : T2

Γ ` λx:T1. t2 : T1 → T2
T-Abs

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
T-App

Design Principles of Programming Languages, Spring 2024 6

Type Substitutions

Definition
A type substitution is a finite mapping from type variables to types.

Example
We define σ def

= [X 7→ Bool, Y 7→ U] for the substitution that maps X to Bool and Y toU.
We write dom(·) for left-hand sides of pairs in a substitution, e.g., dom(σ) = {X, Y}.
We write range(·) for the right-hand sides of pairs in a substitution, e.g., range(σ) = {Bool,U}.

Remark
The pairs of a substitution are applied simultaneously.
For example, [X 7→ Bool, Y 7→ X → X]maps Y to X → X, not Bool → Bool.

Design Principles of Programming Languages, Spring 2024 7

Type Substitutions

Application of a Substitution to Types

σ(X)
def
=

{
T if (X 7→ T) ∈ σ

X if X is not in the domain of σ

σ(Nat) def
= Nat

σ(Bool) def
= Bool

σ(T1 → T2)
def
= σ(T1) → σ(T2)

Composition of Substitutions

σ ◦ γ def
=

[
X 7→ σ(T) for each (X 7→ T) ∈ γ

X 7→ T for each (X 7→ T) ∈ σ with X 6∈ dom(γ)

]

Design Principles of Programming Languages, Spring 2024 8

Type Substitutions
Application of a Substitution to Contexts

σ(x1 : T1, . . . , xn : Tn)
def
= (x1 : σ(T1), . . . , xn : σ(Tn))

Application of a Substitution to Terms

σ(x)
def
= x

σ(λx:T1. t2)
def
= λx:σ(T1).σ(t2)

σ(t1 t2)
def
= σ(t1) σ(t2)

Theorem (Preservation of Typing under a Substitution)
If σ is any type substitution and Γ ` t : T , then σ(Γ) ` σ(t) : σ(T).

Design Principles of Programming Languages, Spring 2024 9

Type Inference
Definition (Type Inference in terms of Substitutions)
Let Γ be a context and t be a term. A solution for (Γ , t) is a pair (σ, T) such that σ(Γ) ` σ(t) : T .

Remark (Two Views of σ(Γ) ` σ(t) : T)

• Type Infernece: does there exist some σ such that σ(Γ) ` σ(t) : T for some T?
• Another view: for every σ, do we have σ(Γ) ` σ(t) : T for some T?

• This corresponds to parametric polymorphism, e.g.,∅ ` λf:X → X. λa:X. f (f a) : (X → X) → X → X.

Example
Let Γ def

= f : X,a : Y and t def
= f a. Below gives some solutions for (Γ , t):

σ T σ T

[X 7→ Y → Nat] Nat [X 7→ Y → Z] Z
[X 7→ Y → Z,Z 7→ Nat] Z [X 7→ Y → Nat → Nat] Nat → Nat
[X 7→ Nat → Nat, Y 7→ Nat] Nat

Design Principles of Programming Languages, Spring 2024 10

Erasure (revisited)

erase(x) def
= x

erase(λx:T1. t2)
def
= λx. erase(t2)

erase(t1 t2)
def
= erase(t1) erase(t2)

Definition (Type Inference)
Let Γ be a context andm be an untyped term. A solution for (Γ ,m) is a substitution (σ, T) such that σ(Γ) ` m : T .

x : T ∈ Γ

Γ ` x : T
T-Var

Γ , x : T1 ` t2 : T2

Γ ` λx. t2 : T1 → T2
T-Abs

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1 t2 : T12
T-App

Given the derivation, it is trivial to construct a well-typed term t such that erase(t) = m.

Design Principles of Programming Languages, Spring 2024 11

Constraint Typing
Definition
A constraint set C is a set of equations {Si = Ti

1...n} where Si ’s and Ti ’s are types.

Γ ` t : T |X C: “term t has type T under context Γ whenever constraintsC are satisfied”
The setX is used to track new type variables introduced in each subderivation.

x : T ∈ Γ

Γ ` x : T |∅ {}
CT-Var

Γ , x : T1 ` t2 : T2 |X C
Γ ` λx:T1. t2 : T1 → T2 |X C

CT-Abs

Γ ` t1 : T1 |X1
C1 Γ ` t2 : T2 |X2

C2 X1 ∩X2 = X1 ∩ FV(T2) = X2 ∩ FV(T1) = ∅
X 6∈ X1,X2, T1, T2, C1, C2, Γ , t1, t2 C ′ = C1 ∪ C2 ∪ {T1 = T2 → X}

Γ ` t1 t2 : X |X1∪X2∪{X} C ′ CT-App

Question (Exercise 22.3.3)
Construct a constraint typing derivation for λx:X. λy:Y. λz:Z. (x z) (y z).
Design Principles of Programming Languages, Spring 2024 12

Solutions for Constraint Typing

Definition
A substitution σ is said to unify an equation S = T if σ(S) = σ(T).
We say that σ unifies a constraint setC if it unifies every equation in C.

Definition
Suppose that Γ ` t : S |X C. A solution for (Γ , t,S, C) is a pair (σ, T) such that σ unifiedC and σ(S) = T .

Remark
Recall that a solution for (Γ , t) is a pair (σ, T) such that σ(Γ) ` σ(t) : T .
What are the relation between the two definitions of solutions for type inference?

Design Principles of Programming Languages, Spring 2024 13

Properties of Constraint Typing
Theorem (Soundness)
Suppose that Γ ` t : S | C. If (σ, T) is a solution for (Γ , t,S, C), then it is also a solution for (Γ , t).

Proof Sketch
By induction on the derivation of constraint typing.

Theorem (Completeness)
Suppose Γ ` t : S |X C. If (σ, T) is a solution for (Γ , t) and dom(σ)∩X = ∅, then there is some solution (σ ′, T)
for (Γ , t,S, C) such that σ ′ \ X = σ.

Proof Sketch
By induction on the derivation of constraint typing.

Design Principles of Programming Languages, Spring 2024 14

Unification
Remark
Hindley (1969)4 and Milner (1978)5 apply unification to calculate a “best” solution to a given constraint set.

Definition
A substitution σ is less specific (ormore general) than a substitution σ ′, written σ v σ ′, if σ ′ = γ ◦ σ for some γ.

A principal unifier (or sometimesmost general unifier) for a constraint setC is a substitution σ that unifiesC and
such that σ v σ ′ for every substitution σ ′ unifyingC.

Question (Exercise 22.4.3)
Write down principal unifiers (when they exist) for the following sets of constraints:

{X = Nat, Y = X → X} {Nat → Nat = X → Y} {X → Y = Y → Z,Z = U → W}

{Nat = Nat → Y} {Y = Nat → Y} {}

4R. Hindley. 1969. The Principal Type-Scheme of an Object in Combinatory Logic. Trans. of the American Math. Society, 146, 29–60. doi: 10.2307/1995158.
5R. Milner. 1978. A Theory of Type Polymorphism in Programming. J. Comput. Syst. Sci., 17, 348–375, 3. doi: 10.1016/0022-0000(78)90014-4.

Design Principles of Programming Languages, Spring 2024 15

https://doi.org/10.2307/1995158
https://doi.org/10.1016/0022-0000(78)90014-4

Unification Algorithm

unify(C) = ifC = ∅, then []
else let {S = T }∪ C ′ = C in
if S = T

then unify(C ′)

else if S = X and X 6∈ FV(T)

then unify([X 7→ T]C ′) ◦ [X 7→ T]

else if T = X and X 6∈ FV(S)

then unify([X 7→ S]C ′) ◦ [X 7→ S]

else if S = S1 → S2 and T = T1 → T2

then unify(C ′ ∪ {S1 = T1,S2 = T2})

else
fail

What if we omit the occur checks (i.e., X 6∈ FV(T) and X 6∈ FV(S))?
Design Principles of Programming Languages, Spring 2024 16

Correctness of Unification Algorithm

Theorem
The algorithm unify always terminates, failing when given a non-unifiable constraint set as input and otherwise
returning a principal unifier.

Proof Sketch
• Termination: define the degree ofC to be the pair (number of distinct type variables, total size of types).
• unify(C) returns a unifier: prove by induction on the number of recursive calls to unify.

• Fact: if σ unifies [X 7→ T]D, then σ ◦ [X 7→ T] unifies {X = T }∪ D.
• unify(C) returns a principal unifier: prove by induction on the number of recursive calls.

Design Principles of Programming Languages, Spring 2024 17

Principal Types
Definition
A principal solution for (Γ , t,S, C) is a solution (σ, T) such that, σ v σ ′ for any other solution (σ ′, T ′).
When (σ, T) is a principal solution, we call T a principal type of t under Γ .

Theorem
If (Γ , t,S, C) has any solution, then it has a principal one.
The unify algorithm can be used to determine if there exists a solution and, if so, to calculate a principal one.

Corollary
It is decidable whether (Γ , t) has a solution.

Remark
Recall that type inference for System F is undecidable.
Design Principles of Programming Languages, Spring 2024 18

Recall: Prenex Polymorphism

Prenex Polymorphism

• Type variables range only over quantifier-free types (monotypes).
• Quantified types (polytypes) are not allows to appear on the left-hand sides of arrows.

Let-Polymorphism is a Variant of Prenex Polymorphism where …

• Quantifiers can only occur at the outermost level of types.
• Type abstractions are implicitly introduced at let-bindings.
• Type applications are implicitly introduced at variables.

Design Principles of Programming Languages, Spring 2024 19

Let-Polymorphism as a Fragment of System F
Syntax

t ::= x | λx:T . t | t t | let x = t in t | . . .
v ::= λx:T . t | . . .
T ::= X | T → T | . . .

T ::= ∀X1 . . . Xn. T
Γ ::= ∅ | Γ , x : T

Typing

Γ ` t1 : T1 {X1, . . . ,Xn} = FV(T1) \ FV(Γ) T1 = ∀X1 . . . Xn. T1 Γ , x : T1 ` t2 : T2

Γ ` let x = t1 in t2 : T2
T-Let

x : ∀X1 . . . Xn. T ∈ Γ

Γ ` x : [X1 7→ S1, . . . ,Xn 7→ Sn]T
T-Var

Design Principles of Programming Languages, Spring 2024 20

Let-Polymorphism as a Fragment of System F

Example
let double = λ f:(X→X). λ a:X. f (f a) in (T-Let): ∀X. (X → X) → X → X

{double (λ x:Nat. succ (succ x)) 1, (T-Var): (Nat → Nat) → Nat → Nat
double (λ x:Bool. x) false} (T-Var): (Bool → Bool) → Bool → Bool

Observation
Let-polymorphism can be equivalently implemented in simply-typed lambda-calculus with the following rule:

Γ ` t1 : T1 Γ ` [x 7→ t1]t2 : T2

Γ ` let x = t1 in t2 : T2
T-LetPoly

Design Principles of Programming Languages, Spring 2024 21

Constraint Typing for Let-Polymorphism

Γ ` t1 : T1 |X1
C1 {X1, . . . ,Xn} = FV(T1)∪ FV(C1) \ FV(Γ)

T1 = ∀X1 . . . Xn. C1 ⊃ T1 Γ , x : T1 ` t2 : T2 |X2
C2

Γ ` let x = t1 in t2 : T2 |X1∪X2
C1 ∪ C2

CT-Let

x : ∀X1 . . . Xn. C ⊃ T ∈ Γ Y1, . . . , Yn 6∈ X1, . . . ,Xn, T , Γ
Γ ` x : [X1 7→ Y1, . . . ,Xn 7→ Yn]T |{Y1,...,Yn} [X1 7→ Y1, . . . ,Xn 7→ Yn]C

CT-Var

Example
let double = λ f:(X→X). λ a:X. f (f a) in

(CT-Let): ∀X,X1,X2. {X → X = X → X1,X → X = X1 → X2} ⊃ (X → X) → X → X2 | {. . .}

{double (λ x:Nat. succ (succ x)) 1,
(CT-Var): (Y → Y) → Y → Y2 | {Y → Y = Y → Y1, Y → Y = Y1 → Y2}∪ {Y → Y = Nat → Nat}
double (λ x:Bool. x) false}
(CT-Var): (Z → Z) → Z → Z2 | {Z → Z = Z → Z1,Z → Z = Z1 → Z2}∪ {Z → Z = Bool → Bool}

Design Principles of Programming Languages, Spring 2024 22

Interaction with Side Effects

Example
Let-polymorphism would assign ∀X. Ref(X → X) to r in the following code:

let r = ref (λ x:X. x) in
(r := (λ x:Nat. succ x);
(!r)true);

When type-checking the second line, we instantiate r to have type Ref(Nat → Nat).
When type-checking the third line, we instantiate r to have type Ref(Bool → Bool).
But this is unsound!

Value Restriction
A let-binding can be treated polymorphically—i.e., its free type variables can be generalized—only if its right-hand
side is a syntactic value.

Design Principles of Programming Languages, Spring 2024 23

Design Principles of
Programming Languages

编程语言的设计原理

Design Principles of Programming Languages, Spring 2024 24

Key Takeaways

Principle
• The uses of type systems go far beyond their role in detecting errors.
• Type systems offer crucial support for programming: abstraction, safety, efficiency, …
• Language design shall go hand-in-hand with type-system design.

λ→: Simply-Typed Lambda Calculus Extensions: Tuples, Sums, Lists, …

Effects: References, Exceptions, …λ<:: Subtypingλµ: Recursive Types

System F: Polymorphism

λω: Type Operators λP: Dependent Types

Design Principles of Programming Languages, Spring 2024 25

Homework
Question
Consider the following lambda-abstraction:

λ x:X. x x
Construct a constraint typing derivation for it.
Is the constraint set unifiable?
What if removing the occur checks in the unify algorithm and allowing recursive types, as shown below?
What is the result of this unify algorithm?

unify(C) = . . .

else if S = X and X 6∈ FV(T)

then unify([X 7→ T]C ′) ◦ [X 7→ T]

else if S = X and X ∈ FV(T)

then unify([X 7→ µX. T]C ′) ◦ [X 7→ µX. T]
. . .

Design Principles of Programming Languages, Spring 2024 26

