
Design Principles of Programming Languages
编程语言的设计原理

Haiyan Zhao, Di Wang
赵海燕，王迪

Peking University, Spring Term 2024

Design Principles of Programming Languages, Spring 2024 1

Variable Types
变量类型

Design Principles of Programming Languages, Spring 2024 2

Monomorphic Types
Observation
So far in the course, every well-typed closed term has a unique type.
However, we often want to implement the same behavior for different types.

• Identity function: λx:Nat. x, λx:Bool. x, λx:(Nat → Bool). x, …
• Double application: λf:(Nat → Nat). λx:Nat. f (f x),

λf:((Nat → Bool) → (Nat → Bool)). λx:(Nat → Bool). f (f x), …
• Composition: λf:(T2 → T3). λg:(T1 → T2). λx:T1. f (g x) for every triple T1, T2, T3 of types

Observation
Albeit with different types, the terms with the same behavior are almost identical.

Question
How can a programming language capture such a pattern once and for all?
Design Principles of Programming Languages, Spring 2024 3

Polymorphic Types
Principle (Abstraction)
Each significant piece of functionality in a program should be implemented in just one place in the source code.

Example
Replace

doubleNat = λ f:Nat→Nat. λ a:Nat. f (f a);
doubleRcd = λ f:{l:Bool}→{l:Bool}. λ a:{l:Bool}. f (f a);
doubleFun = λ f:(Nat→Nat)→(Nat→Nat). λ a:Nat→Nat. f (f a);
with

double = λ X. λ f:X→X. λ a:X. f (f a);

Question
Can you think of different kinds of polymorphic types?
Design Principles of Programming Languages, Spring 2024 4

Polymorphism
Parametric Polymorphism
Allow a single piece of code to be typed “generically” using type variables.
id = λ X. λ x:X. x;
▶ id : ∀ X. X → X

Ad-hoc Polymorphism
Allow a polymorphic value to exhibit different behaviors when “viewed” at different types.

• Overloading: 1+2 1.0+2.0 "we"+"you"
• Typeclass: (+) Num a => a -> a -> a

Subtype Polymorphism

Allow a single term to have many types using the rule of subsumption:
Γ ` t : S S <: T

Γ ` t : T
.

Design Principles of Programming Languages, Spring 2024 5

System F: Most Powerful Parametric Polymorphism

Some Historical Accounts
• System F was introduced by Girard (1972) in the context of proof theory.1

• System F was independently developed by Reynolds (1974) in the context of programming languages.2

• Reynolds called System F the polymorphic lambda-calculus.

Principle
System F is a straightforward extension of λ→.

• In λ→, we use λx:T . t to abstract terms out of terms.
• In System F, we introduce λX. t to abstract types out of terms.

1J.-Y. Girard. 1972. Interprétation fonctionnelle et élimination des coupures de l’arithmétique d’ordre supérieur. PhD thesis. Université Paris 7.
2J. C. Reynolds. 1974. Towards a Theory of Type Structure. In Programming Symposium, Proceedings Colloque sur la Programmation, 408–423. DOI: 10.1007/3-540-06859-7_148.

Design Principles of Programming Languages, Spring 2024 6

https://doi.org/10.1007/3-540-06859-7_148

Universal Types: Syntax and Evaluation
Syntax

t ::= . . . | λX. t | t [T]
v ::= . . . | λX. t

Evaluation

t1 −→ t ′1
t1 [T2] −→ t ′1 [T2]

E-TApp
(λX. t12) [T2] −→ [X 7→ T2]t12

E-TappTabs

Example
Let us define id def

= λX. λx:X. x.
id [Nat] −→ [X 7→ Nat](λx:X. x) = λx:Nat. x

Design Principles of Programming Languages, Spring 2024 7

Universal Types: Types, Type Contexts, and Typing
Types and Type Contexts

T ::= X | T → T | ∀X. T
Γ ::= ∅ | Γ , x : T | Γ ,X

Typing
Γ ,X ` t2 : T2

Γ ` λX. t2 : ∀X. T2
T-TAbs

Γ ` t1 : ∀X. T12
Γ ` t1 [T2] : [X 7→ T2]T12

T-TApp

Example

T-Var
X, x : X ` x : X

T-Abs
X ` λx:X. x : X → X T-TAbs∅ ` λX. λx:X. x : ∀X.X → X

Design Principles of Programming Languages, Spring 2024 8

Universal Types: Type Formation
Observation
Not all syntactically well-formed types are semantically well-formed, e.g., ∀X. Y → X.

Type Formation

Γ ,X ` X type
Γ ` T1 type Γ ` T2 type

Γ ` T1 → T2 type
Γ ,X ` T1 type
Γ ` ∀X. T1 type

Γ ` T1 type Γ , x : T1 ` t2 : T2

Γ ` λx:T1. t2 : T1 → T2
T-Abs

Γ ` t1 : ∀X. T12 Γ ` T2 type
Γ ` t1 [T2] : [X 7→ T2]T12

T-TApp

Question (Regularity)
Prove that if∅ ` t : T , then∅ ` T type.

Design Principles of Programming Languages, Spring 2024 9

Example: Polymorphic Functions

id = λ X. λ x:X. x;
▶ id : ∀ X. X → X
id [Nat] 0;
▶ 0 : Nat

double = λ X. λ f:X→X. λ a:X. f (f a);
▶ double : ∀ X. (X→X) → X → X
double [Nat] (λ x:Nat. succ(succ(x))) 3;
▶ 7 : Nat

selfApp = λ x:∀ X.X→X. x [∀ X.X→X] x;
▶ selfApp : (∀ X. X→X) → (∀ X. X→X)

quadruple = λ X. double [X→X] (double [X]);
▶ quadruple : ∀ X. (X→X) → X → X

Design Principles of Programming Languages, Spring 2024 10

Example: Polymorphic Lists
List as a Type Operator
We assume the language has the following primitives:

nil : ∀ X. List X isnil : ∀ X. List X → Bool
cons : ∀ X. X → List X → List X head : ∀ X. List X → X

tail : ∀ X. List X → List X

Example

map = λ X. λ Y. λ f: X→Y.
(fix (λ m: (List X) → (List Y).

λ l: List X.
if isnil [X] l then nil [Y]

else cons [Y] (f (head [X] l)) (m (tail [X] l))));
▶ map : ∀ X. ∀ Y. (X→Y) → List X → List Y

Design Principles of Programming Languages, Spring 2024 11

Example: Polymorphic Lists

Question (Exercise 23.4.3)
Using map as a model, write a polymorphic list-reversing function: reverse : ∀ X. List X → List X.

A Solution

rev_append = λ X. fix (λ ra:(List X)→(List X)→(List X). λ l1:(List X). λ l2:(List X).
if isnil [X] l1 then l2
else ra (tail [X] l1) (cons [X] (head [X] l1) l2));

▶ rev_append : ∀ X. List X → List X → List X

reverse = λ X. λ l: List X. rev_append [X] l (nil [X]);
▶ reverse : ∀ X. List X → List X

Design Principles of Programming Languages, Spring 2024 12

Example: Polymorphic Lists
List as a Type Operator
We have assumed the language has the following primitives:

nil : ∀ X. List X isnil : ∀ X. List X → Bool
cons : ∀ X. X → List X → List X head : ∀ X. List X → X

tail : ∀ X. List X → List X

Aside
We can use recursive types to implement List X, e.g.,
nil = λ X. <nil=Unit> as (µT. <nil:Unit, cons:{X,T});
▶ nil : ∀ X. µT. <nil:Unit, cons:{X,T}>

Question
Implement polymorphic binary trees with System F + recursive types.
Design Principles of Programming Languages, Spring 2024 13

Expressiveness of System F

Question
Consider the “vanilla” System F whose types only have three forms: T ::= X | T → T | ∀X. T .
How expressive can it be?
Can it express Booleans, natural numbers, lists, products, sums, inductive/coinductive types, etc.?
Can it express fixed points?

Remark (Church Encodings)
In Chapter 5, we saw that untyped lambda calculus can express all of the notions above.
Let us see if those encodings are well-typed terms in System F.

Design Principles of Programming Languages, Spring 2024 14

Church Encodings: Booleans
Remark (Church Booleans)
tru = λ t. λ f. t;
fls = λ t. λ f. f;
test = λ b. λ m. λ n. b m n;

CBool = ∀ X. X→X→ X;
tru = (λ X. λ t:X. λ f:X. t) as CBool;
▶ tru : CBool
fls = (λ X. λ t:X. λ f:X. f) as CBool;
▶ fls : CBool
test = λ Y. λ b:CBool. λ m:Y. λ n:Y. b [Y] m n;
▶ test : ∀ Y. CBool → Y → Y → Y

Question
Why does the polymorphic function type CBool characterize Booleans?
Design Principles of Programming Languages, Spring 2024 15

Church Encodings: Booleans
Typing Rules for Booleans

Γ ` true : Bool T-True
Γ ` false : Bool T-False

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T
T-If

Observation
The definition CBool = ∀ T. T→T→ T encodes the typing rule (T-If).

Principle
Encode typing rules for elimination forms as polymorphic function types.

Example
Using Booleans are directly applying their polymorphic functions with respect to the elimination typing rule.
test = λ T. λ t1:CBool. λ t2:T. λ t3:T. t1 [T] t2 t3;
Design Principles of Programming Languages, Spring 2024 16

Church Encodings: Booleans
Question
Can test be used as conditional expressions?

Observation
Under call-by-value, test [T] t1 t2 t3 (where T is the type of t2, t3) evaluates both t2 and t3.

A Solution: Dummy Abstractions
CBool = ∀ X. (Unit→X)→(Unit→X)→ X;
test = λ Y. λ b:CBool. λ m:(Unit→Y). λ n:(Unit→Y). b [Y] m n;
▶ test: ∀ Y. CBool → (Unit→Y) → (Unit→Y) → Y
We can encode if t1 then t2 else t3 as test [T] t1 (λ_:Unit. t2) (λ_:Unit. t3).

Question
Write down the encodings for true and false with dummy abstractions.
Design Principles of Programming Languages, Spring 2024 17

Church Encodings: Unit
Typing Rules for Unit

Γ ` unit : Unit T-Unit
Γ ` t1 : Unit Γ ` t2 : T

Γ ` let unit = t1 in t2 : T
T-LetUnit

Question
Encode the elimination rule (T-LetUnit) as a polymorphic function type CUnit.

A Solution
CUnit = ∀ X. X→X;
unit = (λ X. λ r:X. r) as CUnit;
▶ unit : CUnit
seq = λ Y. λ u:CUnit. λ m:Y. u [Y] m;
▶ seq : ∀ Y. CUnit → Y → Y
It is worth noting that unit is the polymorphic identity function.
Design Principles of Programming Languages, Spring 2024 18

Church Encodings: Products
Typing Rules for Products

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` {t1, t2} : T1 × T2
T-Pair

Γ ` t1 : T11 × T12

Γ ` t1.1 : T11
T-Proj1

Γ ` t1 : T11 × T12

Γ ` t1.2 : T12
T-Proj2

Γ ` t1 : T11 × T12 Γ , x : T11,y : T12 ` t2 : S

Γ ` let {x,y} = t1 in t2 : S
T-LetPair

Question
How to encode the elimination rule (T-LetPair) as a polymorphic function type?

A Solution
PairT11,T12

= ∀ S. (T11→T12→S) → S;
We will later see how to extend the type system to support type operators like Pair.
Design Principles of Programming Languages, Spring 2024 19

Church Encodings: Products
PairT1,T2 = ∀ X. (T1→T2→X) → X;

pairT1,T2 = λ x:T1. λ y:T2. (λ X. λ p:(T1→T2→X). p x y) as PairT1,T2;
▶ pairT1,T2 : T1 → T2 → PairT1,T2

unpairT1,T2 = λ Y. λ p:PairT1,T2. λ m:(T1→T2→Y). p [Y] m;
▶ unpairT1,T2 : ∀ Y. PairT1,T2 → (T1→T2→Y) → Y

fstT1,T2 = λ p:PairT1,T2. p [T1] (λ x:T1. λ _:T2. x);
▶ fstT1,T2 : PairT1,T2 → T1
sndT1,T2 = λ p:PairT1,T2. p [T2] (λ _:T1. λ y:T2. y);
▶ sndT1,T2 : PairT1,T2 → T2

Question
Use unpair to define fst and snd.
Design Principles of Programming Languages, Spring 2024 20

Church Encodings: Sums
Question
Recall that with sum types, we can define the Boolean type as Unit+ Unit and Boolean literals as
inl unit, inr unit. Can you define the encodings of general sum types T1 + T2?

Hint: write down the typing rule for eliminating sum types.

Γ ` t0 : T1 + T2 Γ , x1 : T1 ` t1 : S Γ , x2 : T2 ` t2 : S

Γ ` case t0 of inl x1 ⇒ t1 | inr x2 ⇒ t2 : S
T-Case

A Solution
SumT1,T2

= ∀ S. (T1→S) → (T2→S) → S;
inlT1,T2

= λ v:T1. (λ S. λ l:(T1→S). λ r:(T2→S). l v) as SumT1,T2
;

▶ inlT1,T2
: T1 → SumT1,T2

inrT1,T2
= λ v:T2. (λ S. λ l:(T1→S). λ r:(T2→S). r v) as SumT1,T2

;
▶ inrT1,T2

: T2 → SumT1,T2

Design Principles of Programming Languages, Spring 2024 21

Church Encodings: Sums
SumT1,T2 = ∀ X. (T1→X) → (T2→X) → X;

inlT1,T2 = λ v:T1. (λ X. λ l:(T1→S). λ r:(T2→S). l v) as SumT1,T2;
▶ inlT1,T2 : T1 → SumT1,T2
inrT1,T2 = λ v:T2. (λ X. λ l:(T1→S). λ r:(T2→S). r v) as SumT1,T2;
▶ inlT1,T2 : T2 → SumT1,T2

test = λ Y. λ b:SumT1,T2. λ m:(T1→Y). λ n:(T2→Y). b [Y] m n;
▶ test : ∀ Y. SumT1,T2 → (T1→Y) → (T2→Y) → Y

Question
How to encode case t0 of inl x1 ⇒ t1 | inr x2 ⇒ t2?

A Solution
test [T] t0 (λx1:T1. t1) (λx2:T2. t2), where T is the type of t1 and t2.
Design Principles of Programming Languages, Spring 2024 22

Church Encodings: Natural Numbers
Remark (Church Numerals)
c0 = λ s. λ z. z;
c1 = λ s. λ z. s z;
c2 = λ s. λ z. s (s z);

Question
To repeat the practice, we need a typing rule for eliminating natural numbers.
Hint: we shall view the type of natural numbers as an inductive type.

A Solution
Γ ` t1 : Nat Γ , x : Unit+ S ` t2 : S

Γ ` iter [Nat] t1 with x. t2 : S
T-Iter-Nat

Thus, we can extract a possible encoding ∀S. ((Unit+ S) → S) → S.
Design Principles of Programming Languages, Spring 2024 23

Church Encodings: Natural Numbers
CNat = ∀ X. ((Unit + X) → X) → X;
CNat = ∀ X. ((Unit → X) × (X → X)) → X;
CNat = ∀ X. (X × (X → X)) → X;
CNat = ∀ X. (X → X) → X → X;

Remark
Γ ` t1 : Nat Γ ` t2 : S Γ , x : S ` t3 : S

Γ ` iter [Nat] t1 with zero ⇒ t2 | succ ⇒ x. t3 : S
T-Iter-Nat

c0 = (λ X. λ s:X→X. λ z:X. z) as CNat;
▶ c0 : CNat
c1 = (λ X. λ s:X→X. λ z:X. s z) as CNat;
▶ c1 : CNat
c2 = (λ X. λ s:X→X. λ z:X. s (s z)) as CNat;
▶ c2 : CNat
Design Principles of Programming Languages, Spring 2024 24

Church Encodings: Natural Numbers
CNat = ∀ X. (X → X) → X → X;

zero = (λ X. λ s:X→X. λ z:X. z) as CNat;
▶ zero : CNat
succ = λ n:CNat. (λ X. λ s:X→X. λ z:X. s (n [X] s z)) as CNat;
▶ csucc : CNat → CNat

plus = λ m:CNat. λ n:CNat. m [CNat] succ n;
▶ plus : CNat → CNat → CNat

Question
Define a function mult that calculates the product of two natural numbers.

Observation
We do not need recursion to define plus and mult. How can it be possible?
Design Principles of Programming Languages, Spring 2024 25

Church Encodings: Lists

Question
We have seen List T as a primitive type or as a recursive type. Can we encode it in the “vanilla” System F?

Remark (Iterating over Lists)
Γ ` t1 : List T11 Γ , x : Unit+ T11 × S ` t2 : S

Γ ` iter [List T11] t1 with x. t2 : S
T-Iter-List

ListT11 = ∀ S. ((Unit + T11 × S) → S) → S;
ListT11 = ∀ S. ((Unit → S) × (T11 × S → S)) → S;
ListT11 = ∀ S. (S × (T11 → S → S)) → S;
ListT11 = ∀ S. (T11 → S → S) → S → S;
Design Principles of Programming Languages, Spring 2024 26

Church Encodings: Lists
ListT = ∀ X. (T→X→ X) → X → X;

nilT = (λ X. λ c:(T→X→ X). λ n:X. n) as ListT;
▶ nilT : ListT
consT = λ hd:T. λ tl:ListT. (λ X. λ c:(T→X→X). λ n:X. c hd (tl [X] c n)) as ListT;
▶ consT : T → ListT → ListT

isnilT = λ l:ListT. l [Bool] (λ _:T. λ _:Bool. false) true;
▶ isnilT : ListT → Bool
headT = λ l:ListT. l [T] (λ hd:T. λ _:T. hd) error;
▶ headT : ListT → T

Question
• The definition above for headT does not work under call-by-value. Can you make it work?
• Can you define a function sum : ListNat → Natwithout using recursion?

Design Principles of Programming Languages, Spring 2024 27

Church Encodings: Inductive Types
Remark (Iteration)

Γ ` t1 : ind(X. T) Γ , x : [X 7→ S]T ` t2 : S

Γ ` iter [X. T] t1 with x. t2 : S
T-Iter

Principle
For every inductive type ind(X. T), its encoding in System F could be the following:

IndX.T = ∀ S. ([X 7→ S]T → S) → S;

foldX.T = λ v:[X 7→ IndX.T]T. (λ S. λ f:([X 7→ S]T → S). map [X. T] v with x. f x) as IndX.T;
▶ foldX.T : [X 7→ IndX.T]T → IndX.T

Question
Can we encode coinductive types in a similar way?
Design Principles of Programming Languages, Spring 2024 28

Church Encodings: Streams
Remark (Generation of Streams)
Previously, we define Stream as a coinductive type coi(X. Nat×X).

Γ ` t1 : S Γ , x : S ` t2 : Nat× S

Γ ` gen [X. Nat×X] t1 with x. t2 : coi(X. Nat×X)
T-Gen-Stream

Observation
The parameter type S does NOT appear in the conclusion part!
We need a notion to say that there exists some type S, such that a stream consists of an “internal state” of type S
and a “generator” of type S → Nat× S.

Observation
From the perspective of elimination, one can use S and S → Nat× S to produce a value of some other type T .

Design Principles of Programming Languages, Spring 2024 29

Church Encodings: Streams

An Encoding of Streams

Stream = ∀ T. (∀ S. S → (S → Nat × S) → T) → T;

unfoldStream = λ v:Stream. v [Nat × Stream]
(λ S. λ s:S. λ g:(S→Nat×S).

let v' = g s in
{v'.1,(λ T. λ f:(∀ S. S→(S→Nat×S)→T). f [S] v'.2 g)})

▶ unfoldStream : Stream → Nat × Stream

Question
Encode the generation rule (T-Gen-Stream) as genStream : ∀S.S → (S → Nat× S) → Stream.

Design Principles of Programming Languages, Spring 2024 30

Church Encodings: Coinductive Types
Remark (Generation)

Γ ` t1 : S Γ , x : S ` t2 : [X 7→ S]T

Γ ` gen [X. T] t1 with x. t2 : coi(X. T)
T-Gen

Principle
For every coinductive type coi(X. T), its encoding in System F could be the following:

CoiX.T = ∀ Y. (∀ S. S → (S → [X 7→ S]T) → Y) → Y;

unfoldX.T = λ v:CoiX.T. v [[X 7→ coi(X. T)]T]
(λ S. λ s:S. λ g:(S → [X 7→ S]T).
let v' = g s in
map [X. T] v' with x. (λ Y. λ f:(∀ S. S→(S→[X 7→ S]T)→Y). f [S] x g));

▶ unfoldX.T : CoiX.T → [X 7→ CoiX.T]T

Design Principles of Programming Languages, Spring 2024 31

Properties of System F

Theorem (Preservation)
If Γ ` t : T and t −→ t ′, then Γ ` t ′ : T .

Theorem (Progress)
If t is a closed, well-typed term, then either t is a value or there is some t ′ with t −→ t ′.

Theorem (Normalization)
Well-typed System-F terms are normalizing, i.e., the evaluation of every well-typed term terminates.

Question (Homework)
Exercises 23.5.1 or 23.5.2: prove preservation or progress of System F.

Design Principles of Programming Languages, Spring 2024 32

Parametricity
Observation
Polymorphic types severely constrain the behavior of their elements.

• If∅ ` t : ∀X.X → X, then t is (essentially) the identity function.
• If∅ ` t : ∀X.X → X → X, then t is (essentially) either tru (i.e., λX. λt:X. λf:X. t) or fls (i.e.,

λX. λt:X. λf:X. f).

Definition (Parametricity)
Properties of a term that can be proved knowing only its type are called parametricity.
Such properties are often called free theorems as they come from typing for free.

Aside (Read More)
• J. C. Reynolds. 1983. Types, Abstraction and Parametric Polymorphism. In Information Processing, 513–523.
• P. Wadler. 1989. Theorems for free! In Functional Programming Languages and Computer Architecture
(FPCA’89), 347–359. doi: 10.1145/99370.99404.

Design Principles of Programming Languages, Spring 2024 33

https://doi.org/10.1145/99370.99404

Parametricity: The Unary Case

Proposition
For any closed term id : ∀X.X → X, for any type T and any property P of the type T , if P holds of t : T , then P holds
of id [T] t : T .

Remark
P needs to be closed under head expansion, i.e., if t −→ t ′ and P holds of t ′ : T , then P also holds of t : T .

Example
Fix t0 : T . Consider Pt0 that holds of t1 : T iff t1 is equivalent to t0 (i.e., t1 =β t0).
Obviously Pt0 holds of t0 itself.
By the proposition above, Pt0 holds of id [T] t0.
Thus, id [T] t0 is equivalent to t0.

Design Principles of Programming Languages, Spring 2024 34

Parametricity: The Unary Case

Proposition
For any closed term b : ∀X.X → X → X, for any type T and any property P of type T , if P holds ofm : T and of
n : T , then P holds of b [T]mn.

Example
Fix t0 : T and t1 : T . Consider Pt0,t1 that holds of t2 : T iff t2 is equivalent to either t0 or t1.
Obviously Pt0,t1 holds of both t0 and t1.
By the proposition above, Pt0,t1 holds of b [T] t0 t1.
Thus, b [T] t0 t1 is equivalent to either t0 or t1.

Design Principles of Programming Languages, Spring 2024 35

Parametricity: The Unary Case
Definition

• The judgment P : T states that P is a admissible property for type T , i.e., P is a set of closed terms of type T
closed under head expansion.

• The judgment δ : Γ states that δ is a type substitution that assigns a closed type δ(X) to each type variable
X ∈ Γ . A type substitution δ induces a substitution δ̂ on types δ̂(T) def

= [X1 7→ δ(X1), . . . ,Xn 7→ δ(Xn)]T .
• The judgment η : δ states that η is an admissible property assignment on δ : Γ that assigns an admissible
property η(X) : δ(X) to each X ∈ Γ .

Definition (t ∈ T [η : δ])

t ∈ X [η : δ] iff η(X)(t)

t ∈ Bool [η : δ] iff t −→∗ true or t −→∗ false
t ∈ T1 → T2 [η : δ] iff t1 ∈ T1 [η : δ] implies t t1 ∈ T2 [η : δ]

t ∈ ∀X. T [η : δ] iff for every type S and admissible property P : S, t [S] ∈ T [(η,X : S) : (δ,X : P)]

Design Principles of Programming Languages, Spring 2024 36

Parametricity: The Unary Case
Definition

• The judgment γ : Γ states that γ is a term substitution that assigns a closed term γ(x) : Γ(x) to each variable
x ∈ Γ . A term substitution γ induces a substitution γ̂ on terms γ̂(t) def

= [x1 7→ γ(x1), . . . , xn 7→ γ(xn)]t.
• The judgment γ ∈ Γ [η : δ] states that γ and Γ covers the same set of variables and for each such variable x it
holds that γ(x) ∈ Γ(x) [η : δ].

• The judgment Γ ` t ∈ T states that for every type substitution δ : Γ , every admissible property assignment
η : δ, and every term substitution γ : Γ , if γ ∈ Γ [η : δ], then γ̂(δ̂(t)) ∈ T [η : δ].

Theorem (Parametricity)
If Γ ` t : T , then Γ ` t ∈ T .

Proof Sketch
By induction on the derivation of Γ ` t : T .
Design Principles of Programming Languages, Spring 2024 37

Parametricity: Beyond The Unary Case

Proposition (Unary)
For any closed term id : ∀X.X → X, for any type T and any property P of the type T , if P holds of t : T , then P holds
of id [T] t : T .

Proposition (Binary)
For any closed term id : ∀X.X → X, for any types T , T ′ and any binary relationR between T and T ′, ifR relates
t : T to t ′ : T ′, thenR relates id [T] t : T to id [T ′] t ′ : T ′.

Proposition (A Free Theorem)
Let g : T → T ′ be an arbitrary function. For any t : T , it holds that id [T ′] (g t) is equivalent to g (id [T] t).

Design Principles of Programming Languages, Spring 2024 38

Impredicativity
Remark (Russell’s Paradox)
Let R be the set of sets that are not a member of themselves, i.e.,

R
def
= {x | x 6∈ x},

then we can see that R ∈ R ⇐⇒ R 6∈ R, which yields a paradox.

Observation
The paradox comes of letting the x be the very “set” R that is being defined by the membership condition.
Intuitively, impredicativity means self-referencing definitions.

System F is Impredicative
The type variable X in the type T = ∀X.X → X ranges over all types, including T itself.
Fortunately, Girard shows that System F is logically consistent.

Design Principles of Programming Languages, Spring 2024 39

Two Views of Universal Type ∀X. T

Logical Intuition

• An element of ∀X. T is a value of type [X 7→ S]T for all choices of S.
• The identify function λX. λx:X. x erases to λx. x, mapping a value of any type S to a value of the same type.

Operational Intuition

• An element of ∀X. T is a functionmapping any type S to a specialized term with type [X 7→ S]T .
• In the (E-TappTabs) rule, the reduction of a type application is an actual computation step.

Question
We have already seen universal quantifiers ∀. What about existential quantifiers ∃?

Design Principles of Programming Languages, Spring 2024 40

Two Views of Existential Type ∃X. T
Logical Intuition
An element of ∃X. T is a value of type [X 7→ S]T for some type S.

Operational Intuition
An element of ∃X. T is a pair of some type S and a term of type [X 7→ S]T .

Remark
We will focus on the operational view of existential types.
The essence of existential types is that they hide information about the packaged type.

Notations
We write {∃X, T} (instead of ∃X. T) to emphasize the operational view.
The pair of type {∃X, T} is written {*S, t} of a type S and a term t of type [X 7→ S]T .
Design Principles of Programming Languages, Spring 2024 41

A Simple Example
Example
The pair

p = {*Nat, {a=5, f=λ x:Nat. succ(x)}}
has the existential type {∃X, {a : X, f : X → X}}.

• The type component of p is Nat.
• The value component is a record containing of field a of type X and a field f of type X → X, for some X.

Example
The same pair p also has the type {∃X, {a : X, f : X → Nat}}.
In general, the typechecker cannot decide howmuch information should be hidden.
p = {*Nat, {a=5, f=λ x:Nat. succ(x)}} as {∃ X, {a:X, f:X→X}};
▶ p : {∃ X, {a:X, f:X→X}}
p1 = {*Nat, {a=5, f=λ x:Nat. succ(x)}} as {∃ X, {a:X, f:X→Nat}};
▶ p1 : {∃ X, {a:X, f:X→Nat}}

Design Principles of Programming Languages, Spring 2024 42

Introduction Rule for {∃X, T}
Typing

Γ ` t2 : [X 7→ U]T2

Γ ` {*U, t2} as {∃X, T2} : {∃X, T2}
T-Pack

Example
Pairs with different hidden representation types can inhabit the same existential type.
p4 = {*Nat, {a=0, f=λ x:Nat. succ(x)}} as {∃ X, {a:X, f:X→Nat}};
▶ p4 : {∃ X, {a:X, f:X→Nat}}
p5 = {*Bool, {a=ture, f=λ x:Bool. if x then 1 else 0}} as {∃ X, {a:X, f:X→Nat}};
▶ p5 : {∃ X, {a:X, f:X→Nat}}

Design Principles of Programming Languages, Spring 2024 43

Elimination Rule for {∃X, T}
Typing

Γ ` t1 : {∃X, T12} Γ ,X, x : T12 ` t2 : T2

Γ ` let {X, x} = t1 in t2 : T2
T-Unpack

Example
p4 = {*Nat, {a=0, f=λ x:Nat. succ(x)}} as {∃ X, {a:X, f:X→Nat}};
▶ p4 : {∃ X, {a:X, f:X→Nat}}

let {X,x}=p4 in (x.f x.a);
▶ 1 : Nat
let {X,x}=p4 in (λ y:X. x.f y) x.a;
▶ 1 : Nat

Design Principles of Programming Languages, Spring 2024 44

Subtlety of Elimination Rule
Example
p4 = {*Nat, {a=0, f=λ x:Nat. succ(x)}} as {∃ X, {a:X, f:X→Nat}};
▶ p4 : {∃ X, {a:X, f:X→Nat}}

let {X,x}=p4 in succ(x.a);
▶ Error: argument of succ is not a number

let {X,x}=p4 in x.a;
▶ Error: scoping error!

Aside
A simple solution for the scoping problem is to add a well-formedness check as a premise:

Γ ` t1 : {∃X, T12} Γ ,X, x : T12 ` t2 : T2 Γ ` T2 type
Γ ` let {X, x} = t1 in t2 : T2

T-Unpack

Design Principles of Programming Languages, Spring 2024 45

Existential Types: Syntax and Evaluation
Syntax

t ::= . . . | {*T , t} as T | let {X, x} = t in t
v ::= . . . | {*T , v} as T
T ::= . . . | {∃X, T}

Evaluation

let {X, x} = ({*T11, v12} as T1) in t2 −→ [X 7→ T11][x 7→ v12]t2
E-UnpackPack

t12 −→ t ′12
{*T11, t12} as T1 −→ {*T11, t ′12} as T1

E-Pack

t1 −→ t ′1
let {X, x} = t1 in t2 −→ let {X, x} = t ′1 in t2

E-Unpack

Design Principles of Programming Languages, Spring 2024 46

Abstract Data Types (ADTs)

Definition
An abstract data type (ADT) consists of

• a type name A,
• a concrete representation type T,
• implementations of some operations for creating, querying, and manipulating values of type T, and
• an abstraction boundary enclosing the representation and operations.

ADT counter =
type Counter
representation Nat
signature

new : Counter,
get : Counter→Nat,
inc : Counter→Counter;

operations
new = 1,
get = λ i:Nat. i,
inc = λ i:Nat. succ(i);

Design Principles of Programming Languages, Spring 2024 47

Translating ADTs to Existentials

counterADT =
{*Nat,

{new = 1,
get = λ i:Nat. i,
inc = λ i:Nat. succ(i)}}

as {∃ Counter,
{new: Counter,
get: Counter→Nat,
inc: Counter→Counter}};

▶ counterADT : {∃ Counter,
{new:Counter,get:Counter→Nat,inc:Counter→Counter}}

let {Counter,counter} = counterADT in
counter.get (counter.inc counter.new);
▶ 2 : Nat

Design Principles of Programming Languages, Spring 2024 48

ADTs and Modules / Packages
Observation
An element of an existential type can be seen as amodule or a package, in the following sense:

let {Counter,counter} = <counter module / counter package> in
<rest of program that uses the module / package>

let {Counter,counter} = counterADT in
let {FlipFlop,flipflop} =

{*Counter,
{new = counter.new,
read = λ c:Counter. iseven (counter.get c),
toggle = λ c:Counter. counter.inc c,
reset = λ c:Counter. counter.new}}

as {∃ FlipFlop,
{new: FlipFlop, read: FlipFlop→Bool,
toggle: FlipFlop→FlipFlop, reset: FlipFlop→FlipFlop}} in

flipflop.read (flipflop.toggle (flipflop.toggle flipflop.new));
▶ false : Bool

Design Principles of Programming Languages, Spring 2024 49

Representation Independence

Observation
We can substitute an alternative implementation of the Counter ADT and the program will remain typesafe.

counterADT =
{*{x:Nat},
{new = {x=1},
get = λ i:{x:Nat}. i.x,
inc = λ i:{x:Nat}. {x=succ(i.x)}}}

as {∃ Counter,
{new: Counter, get:Counter→Nat, inc:Counter→Counter}};

▶ counterADT : {∃ Counter,
{new:Counter,get:Counter→Nat,inc:Counter→Counter}}

let {Counter,counter} = counterADT in
let {FlipFlop,flipflop} =

Design Principles of Programming Languages, Spring 2024 50

Existential Objects

Idea
We choose a purely functional style, i.e., when we need to change the object’s internal state, we instead build a
fresh object.

A counter object consists of (i) a number (its internal state) and (ii) a pair of methods (its external interface):
Counter = {∃ X, {state:X, methods: {get:X→Nat, inc:X→X}}};

c = {*Nat,
{state = 5,
methods = {get = λ x:Nat. x,

inc = λ x:Nat. succ(x)}}}
as Counter;

▶ c : Counter

Design Principles of Programming Languages, Spring 2024 51

Existential Objects
let {X,body} = c in body.methods.get(body.state);
▶ 5 : Nat

sendget = λ c:Counter.
let {X,body} = c in
body.methods.get(body.state);

▶ sendget : Counter → Nat

let {X,body} = c in body.methods.inc(body.state);
▶ Error: scoping error!

sendinc = λ c:Counter.
let {X,body} = c in
{*X,
{state = body.methods.inc(body.state),
methods = body.methods}}

as Counter;
▶ sendinc : Counter → Counter

Design Principles of Programming Languages, Spring 2024 52

ADTs vs. Objects

ADTs
CounterADT = {∃ Counter, {new:Counter,get:Counter→Nat,inc:Counter→Counter}}

“The abstract type of counters” refers to the (hidden) type Nat, i.e., simple numbers.
ADTs are usually used in a pack-and-then-openmanner, leading to a unique internal representation type.

Objects

Counter = {∃ X, {state:X, methods:{get:X→Nat,inc:X→X}}}
“The abstract type of counters” refers to the whole package, including the number and the implementations.
Objects are kept closed as long as possible and each object carries its own representation type.

Observation
The object style is convenient in the presence of subtyping and inheritance.

Design Principles of Programming Languages, Spring 2024 53

ADTs vs. Objects
Question
What about implementing binary operations on the same abstract type?

Let us consider a simple case: we want to implement an equality operation for counters.

ADT Style
let {Counter,counter} = counterADT in
let counter_eq = λ c1:Counter. λ c2.Counter. nat_eq (counter.get c1) (counter.get c2)
in <rest of program>

Object Style
let counter_eq = λ c1:Counter. λ c2:Counter.

let {X1,body1} = c1 in
let {X2,body2} = c2 in
nat_eq body1.methods.get(body1.state) body2.methods.get(body2.state);

Design Principles of Programming Languages, Spring 2024 54

ADTs vs. Objects
Remark
The equality operation can be implemented outside the abstraction boundary.

Let us consider implementing an abstraction for sets of numbers.
The concrete representation is labeled trees and is NOT exposed to the outside.
We’d implement a union operation that needs to view the concrete representation of both arguments.

ADT Style

NatSetADT = {∃ NatSet, { , union:NatSet→NatSet→NatSet}}

Object Style

NatSet = {∃ X, {state:X, methods:{ , union:X→NatSet→X}}}
Problems: (i) we need recursive types, and (ii) union cannot access the concrete structure of its 2nd argument.
Design Principles of Programming Languages, Spring 2024 55

ADTs vs. Objects
Question (Exercise 24.2.5)
Why can’t we use the type

NatSet = {∃ X, {state:X, methods:{ , union:X→X→X}}}
instead?

Answer
We cannot send a unionmessage to a NatSet object, with another NatSet object as an argument of the message:
sendunion = λ s1:NatSet. λ s2:NatSet.

let {X1,body1} = s1 in
let {X2,body2} = s2 in

body1.methods.union body1.state body2.state
Another explanation: objects allow different internal representations, thus union:X→X→ X is not safe.

Question
In C++, Java, etc., it’s not difficult to implement such a union operation. How does that work?
Design Principles of Programming Languages, Spring 2024 56

Encoding Existentials in System F

The Elimination Rule for Existentials

Γ ` t1 : {∃X, T} Γ ,X, x : T ` t2 : S

Γ ` let {X, x} = t1 in t2 : S
T-Unpack

{∃ X,T} def
= ∀ S. (∀ X. T → S) → S

{*S,t} as {∃ X,T} def
= λ S. λ f:(∀ X. T → YS. f [S] t

let {X,x} = t1 in t2 def
= t1 [S] (λ X. λ x:T. t2)

Design Principles of Programming Languages, Spring 2024 57

Homework

Do one of them!

Question (Exercise 23.5.1)
If Γ ` t : T and t −→ t ′, then Γ ` t ′ : T .

Question (Exercise 23.5.2)
If t is a closed, well-typed term, then either t is a value or else there is some t ′ with t −→ t ′.

Design Principles of Programming Languages, Spring 2024 58

