
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

趙海燕，王迪

Peking University, Spring Term 2024

Teaching Team

Instructors

Teaching Assistant

Instructors

• Haiyan Zhao
– 1988, BS, Peking Univ.

– 1991, MS, Peking Univ

– 2003, PhD, Univ. of Tokyo

– 2003-, Assoc. Professor, Peking Univ.

• Research Interest
– Software engineering

– Requirements Engineering, Domain Engineering

– Programming Languages

• Contact
– Office: Rm. 1809, Science Blg #1, Yanyuan / Rm 432, CS Blg, Changping

– Phone： 62757670

– Email： zhhy.sei@pku.edu.cn

Design Principle of Programming Language， Spring 2024 3

mailto:zhhy.sei@pku.edu.cn

Instructors

• Di Wang
– 2017, BS, Peking Univ.

– 2022, PhD, Carnegie Mellon Univ.

– 2022-, Assistant Professor, Peking Univ.

• Research Interests
– Programming Languages

– Quantitative Program Analysis and Verification

– Probabilistic Programming

• Contact
– Office: Rm. 520, Yanyuan Mansion

– Tel: 62757242

– Email: wangdi95@pku.edu.cn

– Webpage: https://stonebuddha.github.io

Design Principle of Programming Language， Spring 2024 4

mailto:wangdi95@pku.edu.cn
https://stonebuddha.github.io/

Teaching Assistant

• Guanchen Guo

– PhD student from Programming Languages Lab, PKU

• Contact

– guanchenguo@stu.pku.edu.cn

Design Principle of Programming Language， Spring 2024 5

http://pl.cs.pku.edu.cn/en/

Information

• Course website: http://pku-dppl.github.io/2024

– Syllabus

– News/Announcements

– Lecture Notes (slides)

– Other useful resources

• Time：Monday 7-9 (15:10-18:00)

• Place：昌平教学楼 206

Design Principle of Programming Language， Spring 2024 6

http://pku-dppl.github.io/2024

Course Overview

Computer Science vs PL Construction

System = Specification + Program

“ . . . the technology for coping with

large-scale computer systems

merges with the technology for building

new computer languages, and

computer science itself becomes no more (and

no less) than the discipline of constructing

appropriate descriptive languages ”

Design Principle of Programming Language， Spring 2024 8

Isn’t PL a solved problem?

• An old field within CS

– ……

– 1930’s:

– 1940’s:

– 1950’s

– 1960’s:

– 1970’s：

– 1980’s：

– 1990’s：

– 2000’s：

– ……

Design Principle of Programming Language， Spring 2024 9

Isn’t PL a solved problem?

• An old field within CS

– 1930’s: lambda-calculus

– 1940’s:

– 1950’s: Fortran, LISP, COBOL. …

– 1960’s: ALGOL60, PL/1, ALGOL68, …

– 1970’s：C, Pascal, Smalltalk, MODULA, Scheme, ML, …

– 1980’s： Ada, C++, …

– 1990’s： Java, …

– 2000’s： Rust, …

– ……

Design Principle of Programming Language， Spring 2024 10

Programming Languages

• Touches most other areas of CS

– Theory:

– Systems:

– Arch:

– Numeric

– DB:

– Networking:

– Graphics:

– Security:

– Software Engineering:

– ….

• Both theory(math) and practice (engineering)

Design Principle of Programming Language， Spring 2024 11

Programming Languages

• Touches most other areas of CS

– Theory: DFAs, TMs, ….

– Systems: system calls, memory management , …

– Arch: compiler targets. Optimizations, stack frames , …

– Numeric: FORTRAN, matlab , …

– DB: SQL , …

– Networking: packet filter. protocols , …

– Graphics: OpenGL, LaTeX, PostScript , …

– Security: buffer overruns, .net, bytecode , …

– Software Engineering: bug finding, refactoring, types, …

– ….

• Both theory (math) and practice (engineering)

Design Principle of Programming Language， Spring 2024 12

This course is not about …

• An introduction to programming

• A course on compiler

• A course on functional programming

• A course on language paradigms/styles

All the above are certainly helpful for your deep understanding of
this course.

Design Principle of Programming Language， Spring 2024 13

What is this course about?

• Study fundamental (formal) approaches to describing program

behaviors that are both precise and abstract.

– precise so that we can use mathematical tools to formalize and

check interesting properties

– abstract so that properties of interest can be discussed clearly,

without getting bogged down in low-level details

Design Principle of Programming Language， Spring 2024 14

What you can get out of this course?

• A more sophisticated perspective on programs, programming

languages, and the activity of programming

– How to view programs and whole languages as formal,

mathematical objects

– How to make and prove rigorous claims about them

– Detailed study of a range of basic language features

• Powerful tools/techniques for language design, description, and

analysis

Design Principle of Programming Language， Spring 2024 15

What background is required?

• Basic knowledge on

– Discrete mathematics: sets, functions, relations, orders

– Algorithms: list, tree, graph, stack, queue, heap

– Elementary logics: propositional logic, first-order logic

• Familiar with a programming language and basic knowledge of

compiler construction

Design Principle of Programming Language， Spring 2024 16

Textbook

• Types and Programming Languages

– Benjamin Pierce

– The MIT Press

– 2002-02-01

– ISBN 9780262162098

.

Design Principle of Programming Language， Spring 2024 17

Outline

• Basic operational semantics
and proof techniques

• Untyped Lambda calculus

• Simply typed Lambda calculus

• Simple extensions (basic and
derived types)

• References

• Exceptions

• Subtyping

• Recursive types

• Polymorphism

• [Higher-order systems]
Design Principle of Programming Language， Spring 2024 18

Preliminary: syntax，
semantics

Untyped Lambda
Calculus

Simple typed Lambda calculus

Simple extensions: basic
and derived types

Universal type:
System F

Case study

Typing

Poly+ subtype

Recursive Type

ADT

FJ

Type operator
& Kinding

Reference

Subtyping

Outline

• Basic operational semantics and proof techniques

• Untyped Lambda calculus

• Simple typed Lambda calculus

• Simple extensions (basic and derived types)

• References

• Exceptions

• Subtyping

• Recursive types

• Polymorphism

• [Higher-order systems]

Design Principle of Programming Language， Spring 2024 19

Grading

• Homework: 40%

• Activity in class + midTest : 20%

• Final (Report/Presentation): 40%

Design Principle of Programming Language， Spring 2024 20

How to study this course?

• Before class: scanning through the chapters to learn and gain

feeling about what will be studied

• In class: trying your best to understand the contents and raising

hands when you have questions at any time

– Discussion / lecture

• After class: doing exercises seriously

Design Principle of Programming Language， Spring 2024 21

Chapter 1: Introduction

What is a type system

What type systems are good for

Type systems and programming languages

Design Principle of Programming Language， Spring 2024 22

Type system in PL (CS)

Design Principle of Programming Language， Spring 2024 23

What is a type system (type theory)?

• A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds of
values they compute.

– Tools for program reasoning

– Classification of terms
• according to the properties of the values that the terms (syntactic phrases) will

compute when executed.

– Static approximation
• calculating a kind of static approximation to the run-time behaviors of the terms

– Proving the absence rather than presence of bad program behaviors
• Being static, type systems are necessarily conservative, and the tension between

conservativity and expressiveness is a fundamental fact of life in the design of type
systems

• only guarantee that well-typed programs are free from certain kinds of misbehavior

– Fully automatic (and efficient)
• Typecheckers are typically built into compilers or linkers

Design Principle of Programming Language， Spring 2024 24

What are type systems good for?

• Detecting Errors

– Many programming errors can be detected early, fixed intermediately and easily.

– Errors can often be pinpointed more accurately during typechecking than at run time

– Expressive type systems offer numerous “tricks” for encoding information about structure in

terms of types.

• Abstraction

– Type systems form the backbone of the module languages and tie together the components of large

systems in the context of large-scale software composition

– An interface itself can be viewed as “the type of a module” , providing a summary of the facilities

provided by the module.

• Documentation

– Type declarations in procedure headers and module interfaces constitute a form of (checkable)

documentation, which cannot become outdated as it is checked during every run of the compiler.

– This role of types is particularly important in module signatures.
Design Principle of Programming Language， Spring 2024 25

What are type systems good for?

• Language Safety

– A safe language is one that protects its own abstractions.

– Safety refers to the language’s ability to guarantee the integrity of these

abstractions and of higher-level abstractions introduced by the programmer

using the definitional facilities of the language.

– Language safety is not the same thing as static type safety, and can be

achieved by static checking, but also by run-time checks.

• Efficiency

– Removal of dynamic checking; smart code-generation.

– Most high-performance compilers today rely heavily on information gathered by

the typechecker during optimization and code-generation phases.

Design Principle of Programming Language， Spring 2024 26

Type Systems and Languages Design

• Language design should go hand-in-hand with type system design.

– Languages without type systems tend to offer features that make

type-checking difficult or infeasible.

– Concrete syntax of typed languages tends to be more complicated

than that of untyped languages, since type annotations must be

taken into account.

In typed languages the type system itself is often taken as the foundation of the design and

the organizing principle in light of which every other aspect of the design is considered.

Design Principle of Programming Language， Spring 2024 27

Design Programming Languages

• Simplicity

– syntax

– semantics

• Readability

• Safety

• Support for programming large systems

• Efficiency (of execution and compilation)

-- Hints on programming language design by C.A.R. Hoare

Design Principle of Programming Language， Spring 2024 28

Design Programming Languages

• Choose a specific application area

• Make the design committee as small as possible

• Choose some precise design goals

• Release version one of the language to a small set of interested people

• Revise the language definition

• Attempt to build a prototype compiler / to provide a formal definition of the

language semantics

• Revise the language definition again

• Produce a clear, concise language manual and release it

• Provide a production quality compiler and distribute it widely

• Write marvelously clear primers explaining how to use the language

-- “Fundamentals of Programming Languages” by Ellis Horowitz

Design Principle of Programming Language， Spring 2024 29

Homework

• Read Chapters 1 and 2.

• Install OCaml and read “Basics”

– Overview

• https://ocaml.org/docs/

– Installation

• https://ocaml.org/docs/up-and-running

Design Principle of Programming Language， Spring 2024 30

https://ocaml.org/docs/
https://ocaml.org/docs/up-and-running

Chapter 3:

Untyped Arithmetic Expressions

A small language of Numbers and Booleans

Basic aspects of programming languages

Grammar

Programs

Evaluation

Design Principle of Programming Language, Spring 2024 32

Introduction

Grammar

Programs

Evaluation

Grammar (Syntax)

terms:
constant true
constant false
conditional
constant zero
successor
predecessor
zero test

t: metavaraible in the right-hand side (non-terminal symbol)

t ::=
true
false
if t then t else t
0
succ t
pred t
iszero t

For the moment, the words term and expression are used interchangeably

Design Principle of Programming Language, Spring 2024 34

Programs and Evaluations

• A program in the language is just a term built from the forms given by the
grammar

if false then 0 else 1 (1 = succ 0)

→ 1

iszero (pred (succ 0))

→ true

succ (succ (succ (0)))

→?

iszero pred succ 0

succ succ succ 0

Design Principle of Programming Language, Spring 2024 35

Syntax

Many ways of defining syntax (besides grammar)

Terms, Inductively

The set of terms is the smallest set T such that

1. {true, false, 0} ⊆ T;

2. if t1 ∈ T,

then {succ t1, pred t1, iszero t1} ⊆ T;

3. if t1 ∈ T, t2 ∈ T, and t3 ∈ T,

then if t1 then t2 else t3 ∈ T.

Design Principle of Programming Language, Spring 2024 37

Terms, by Inference Rules

The set of terms is defined by the following rules:

Inference rules = Axioms + Proper rules

each rule: If we have established the statements in the premise(s) listed above the line,
then we may derive the conclusion below the line

Design Principle of Programming Language, Spring 2024 38

Terms, Concretely

For each natural number i, define a set Si as follows:

Finally, let

Exercise [**]: How many elements does S3 have?

Proposition: T = S

Design Principle of Programming Language, Spring 2024 39

Induction on Terms

Inductive definitions

Inductive proofs

Inductive Definitions

The set of constants appearing in a term t, written Consts(t), is defined

as:

Design Principle of Programming Language, Spring 2024 41

Inductive Definitions

The size of a term t, written size(t), is defined as follows:

Design Principle of Programming Language, Spring 2024 42

Inductive Definitions

The depth of a term t, written depth(t), is defined as follows:

Design Principle of Programming Language, Spring 2024 43

Inductive Proof

Lemma. The number of distinct constants in a term t is no greater

than the size of t:

| Consts(t) | ≤ size(t)

Proof. By induction over the depth of t.

– Case t is a constant : |Consts(t)| = |{t}| = 1 = size(t).

– Case t is pred t1, succ t1, or iszero t1

By the induction hypothesis, |Consts(t1)| ≤ size(t1), and we have:

|Consts(t)| = |Consts(t1)| ≤ size(t1) < size(t).

– Case t is if t1 then t2 else t3
?

Design Principle of Programming Language, Spring 2024 44

Inductive Proof

Theorem [Structural Induction]

If, for each term s,

given P(r) for all immediate subterms r of s, we can show P(s),

then P(s) holds for all s.

suppose P is a predicate on terms,

and separately considering each of the possible forms that term s could have

Design Principle of Programming Language, Spring 2024 45

• Induction on depth/size of terms is analogous to complete induction

on natural numbers

• Ordinary structural induction corresponds to the ordinary natural

number induction principle where the induction step requires that

P(n+1) be established from just the assumption P(n)

Semantic Styles

Three basic approaches

Operational Semantics

• Operational semantics specifies the behavior of a programming

language by defining a simple abstract machine for it.

• An example (often used in this course):

– terms as states, rather than some low-level microprocessor

instruction set

– behavior : transition from one state to another as simplification

– meaning of t is the final state starting from the state

corresponding to t

Design Principle of Programming Language, Spring 2024 47

Denotational Semantics

• The meaning of a term is taken to be some mathematical object, such
as a number or a function

– basically it's related to mathematical functions, which take
something as an input, do some computation that you don't care
about and produce a result, which you care about

• Giving denotational semantics for a language consists of

– finding a collection of semantic domains, and then

– defining an interpretation function mapping terms into elements of
these domains.

• Main advantage: It abstracts from the gritty details of evaluation and
highlights the essential concepts of the language.

Design Principle of Programming Language, Spring 2024 48

Axiomatic Semantics

• Axiomatic methods take the laws (properties) themselves as the

definition of the language.

– Instead of first defining the behaviors of programs (by giving some

operational or denotational semantics) and then deriving laws from

this definition

• The meaning of a term is just what can be proved about it

– They focus attention on the process of reasoning about programs

– Hoare logic: define the meaning of imperative languages

Design Principle of Programming Language, Spring 2024 49

Evaluation

Evaluation relation (small-step/big-step)

Normal form

Confluence and termination

Evaluation on Booleans

t evaluates to t’ in one step

Design Principle of Programming Language, Spring 2024 51

One-step Evaluation Relation

• The one-step evaluation relation → is the smallest binary relation on

terms satisfying the three rules

• When the pair (t, t′) is in the evaluation relation, we say that

“t → t′ is derivable.”

Design Principle of Programming Language, Spring 2024 52

Derivation Tree

• “if t then false else false → if u then false else false” is witnessed by

the following derivation tree:

Design Principle of Programming Language, Spring 2024 53

Induction on Derivation

Theorem [Determinacy of one-step evaluation]:

If t → t′ and t → t′′, then t′ = t′′.

Proof. By induction on derivation of t → t′.

If the last rule used in the derivation of t → t′ is E-IfTrue, then t has the form

if true then t2 else t3.

It can be shown that there is only one way to reduce such t.

……

At each step of the induction, we assume the desired result for all smaller derivations, and

proceed by a case analysis of the evaluation rule used at the root of the derivation.

Design Principle of Programming Language, Spring 2024 54

Normal Form

• Definition: A term t is in normal form if no evaluation rule applies to it.

• Theorem: Every value is in normal form.

– At present, the converse of this Theorem is also true: every

normal form is a value.

• Theorem: If t is in normal form, then t is a value.

– Prove by contradiction (then by structural induction).

Design Principle of Programming Language, Spring 2024 55

Multi-step Evaluation Relation

• Definition: The multi-step evaluation relation →∗ is the reflexive,

transitive closure of one-step evaluation.

• Theorem [Uniqueness of normal forms]:

If t →∗ u and t →∗ u′, where u and u′ are both normal forms, then

u = u′.

• Theorem [Termination of Evaluation]:

For every term t there is some normal form t′ such that t →∗ t′.

Design Principle of Programming Language, Spring 2024 56

Extending Evaluation to Numbers

Design Principle of Programming Language, Spring 2024 57

Stuckness

• Definition: A closed term is stuck if it is in normal form but not a value.

• Examples:

– succ true

– succ false

– if zero then true else false

Design Principle of Programming Language, Spring 2024 58

Big-step Evaluation

Design Principle of Programming Language, Spring 2024 59

Summary

• How to define syntax?

– Grammar, Inductively, Inference Rules, Generative

• How to define semantics?

– Operational, Denotational, Axomatic

• How to define evaluation relation (operational semantics)?

– Small-step/Big-step evaluation relation

– Normal form

– Confluence/termination

Design Principle of Programming Language, Spring 2024 60

Homework

• Do Exercise 3.5.13 & 3.5.16 in Chapter 3.

Design Principle of Programming Language, Spring 2024 61

Thanks for listening

