
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2024

Part III
Chap 15: Subtyping

Subsumption
Subtype relation

Properties of subtyping and typing
Subtyping and other features
Intersection and union types

Subtyping

Recap for subtyping

Design Principles of Programming Languages, Spring 2024 27

Recap for subtyping

Design Principles of Programming Languages, Spring 2024 28

Subtype Relation: General rules
A subtyping is a binary relation between types that is closed under the
following rules

Design Principles of Programming Languages, Spring 2024 29

Subtype Relation

Design Principles of Programming Languages, Spring 2024 30

Properties of Subtyping

Safety
Statements of progress and preservation theorems are unchanged
from λ→.
However, Proofs become a bit more involved, because the typing
relation is no longer syntax directed.

Given a derivation, we don’t always know what rule was used in the last
step.

e.g., the rule T-SUB could appear anywhere

Design Principles of Programming Languages, Spring 2024 32

Aside: Syntax-directed rules
When we say a set of rules is syntax-directed we mean two things:

1. There is exactly one rule in the set that applies to each syntactic
form. (We can tell by the syntax of a term which rule to use.)
─ e.g., In order to derive a type for t1 t2, we must use T-App.

2. We don't have to “guess" an input (or output) for any rule.
─ e.g., To derive a type for t1 t2, we need to derive a type for t1 and

a type for t2.

Design Principles of Programming Languages, Spring 2024 33

An Inversion Lemma for subtyping
Lemma: If U <: T1 ⟶ T2, then U has the form U1 ⟶ U2, with

T1 <: U1 and U2 <: T2.
Proof: By induction on subtyping derivations.

Case S-Arrow: U = U1 ⟶ U2 T1 <: U1 , U2 <: T2
Immediate.

Case S-Refl: U = T1 ⟶ T2
– By S-Refl (twice), T1 <: T1 and T2 <: T2, as required.

Case S-Trans: U <: W W <: T1 ⟶ T2
― Applying the IH to the second subderivation, we find that W has the form

W1 ⟶ W2, with T1 <: W1 and W2 <: T2.
― Now the IH applies again (to the first subderivation), telling us that U has

the form U1 ⟶ U2 , with W1 <: U1 and U2 <: W2.
― By S-Trans, T1 <: U1 , and, by S-Trans again, U2 <: T2, as required.

Design Principles of Programming Languages, Spring 2024 34

Inversion Lemma for Typing
Lemma: if Γ ⊢ λx: S1. s2: T1 ⟶ T2, then

T1 <: S1 and Γ, x: S1 ⊢ s2: T2
Proof: Induction on typing derivations.

Case T-Abs: T1 = S1， T2 = S2 Γ, x: S1 ⊢ s2: S2

Case T-Sub: Γ ⊢ λx:S1. s2: U U: T1⟶T2
― By the subtyping inversion lemma, U has the form of U1 ⟶U2, with T1 <: U1

and U2 <: T2.

― The IH now applies, yielding U1 <: S1 and Γ, x:S1 ⊢ s2 : U2.

― From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

― From Γ, x:S1 ⊢ s2 : U2 and U2 <: T2, rule T-Sub gives Γ, x: S1 ⊢ s2: T2 , thus
we are done

Design Principles of Programming Languages, Spring 2024 35

Preservation
Theorem: If Γ ⊢ t: T 𝑁𝑁𝑎𝑎𝑎𝑎 t ⟶ t’, 𝑁𝑁𝑡𝑡𝑡𝑎𝑎 Γ ⊢ t′ ∶ T.

Proof: By induction on typing derivations.

Which cases are likely to be hard ?

Design Principles of Programming Languages, Spring 2024 36

Preservation - Subsumption case
Case T-Sub: t ∶ S S <: T

By the induction hypothesis, Γ ⊢ t′ ∶ S.
By T-Sub, Γ ⊢ t′: T.

Not hard!

Design Principles of Programming Languages, Spring 2024 37

Preservation - Application case
Case T-App :

t = t1 t2 Γ ⊢ t1: T11 ⟶ T12 Γ ⊢ t2: T11 T = T12
By the inversion lemma for evaluation, there are

three rules
by which t ⟶ t′ can be derived:

E-App1, E-App2, and E-AppAbs.

Proceed by cases

Design Principles of Programming Languages, Spring 2024 38

Preservation - Application case
Case T-App :

t = t1 t2 Γ ⊢ t1: T11 ⟶ T12 Γ ⊢ t2: T11 T = T12

Subcase E-App1 : t1⟶ t′1 t′ = t′1 t2
The result follows from the induction hypothesis and T-App

Design Principles of Programming Languages, Spring 2024 39

Preservation - Application case

Subcase E-App2 : t1 = v1 t2⟶ t′2 t′ = v1 t′2
Similar.

Case T-App :
t = t1 t2 Γ ⊢ t1: T11 ⟶ T12 Γ ⊢ t2: T11 T = T12

Design Principles of Programming Languages, Spring 2024 40

Preservation - Application case
Case T-App :

t = t1 t2 Γ ⊢ t1: T11 ⟶ T12 Γ ⊢ t2: T11 T = T12
Subcase E-AppAbs :

t1 = λx: S11. t12 t2 = v2 t′ = [x ↦ v2] t12
by the inversion lemma for the typing relation ...

T11 <: 𝑆𝑆11 and Γ, x: S11 ⊢ t12: T12
By using T-Sub, Γ ⊢ t2: S11
by the substitution lemma, Γ ⊢ t′: T12

Design Principles of Programming Languages, Spring 2024 41

Progress
Lemma for Canonical Forms

1. If v is a closed value of type T1 ⟶ T2, then v has the form λx: S1. t2.

2. If v is a closed value of type 𝑙𝑙𝑖𝑖:𝑇𝑇𝑖𝑖𝑖𝑖∈1..𝑛𝑛 , then v has the form �

�

𝑘𝑘𝑗𝑗 =

𝑣𝑣𝑗𝑗
𝑗𝑗∈1..𝑚𝑚 with 𝑙𝑙𝑖𝑖𝑖𝑖∈1..𝑛𝑛 ⊆ 𝑘𝑘𝑎𝑎𝑎𝑎∈1..𝑚𝑚

• Possible shapes of values belonging to arrow and record types.
• Based on this Canonical Forms Lemma, we can still has the progress

theorem and its proof quite close to that in the simply typed lambda-
calculus

Design Principles of Programming Languages, Spring 2024 42

Subtyping with
Other Features

Ascription and Casting
Ordinary ascription:

(T) T
up-cast
down-cast

Design Principles of Programming Languages, Spring 2024 44

Ascription and Casting
Ordinary ascription:

Casting (cf. Java):

Design Principles of Programming Languages, Spring 2024 45

Subtyping and Variants

Design Principles of Programming Languages, Spring 2024 46

Subtyping and Lists

Design Principles of Programming Languages, Spring 2024 47

List is a covariant type constructor

Subtyping and References
Ref is not a covariant (nor a contravariant) type constructor, but an
invariant

Design Principles of Programming Languages, Spring 2024 48

Subtyping and References
Ref is not a covariant (nor a contravariant) type constructor.
Why?
─ When a reference is read, the context expects a T1, so if S1<: T1

then an S1 is ok.
─ When a reference is written, the context provides a T1 and if the

actual type of the reference is Ref S1, someone else may use the T1
as an S1. So we need T1 <: S1.

Design Principles of Programming Languages, Spring 2024 49

References again
Observation: a value of type 𝑅𝑅𝑡𝑡𝑅𝑅 𝑇𝑇 can be used in two different ways:
─ as a source for values of type T , and
─ as a sink for values of type T

Design Principles of Programming Languages, Spring 2024 50

References again
Observation: a value of type 𝑅𝑅𝑡𝑡𝑅𝑅 𝑇𝑇 can be used in two different ways:
─ as a source for values of type T , and
─ as a sink for values of type T

Idea：Split Ref T into three parts:
─ Source T: reference cell with “read capability”
─ Sink T: reference cell with “write capability”
─ Ref T: cell with both capabilities

Design Principles of Programming Languages, Spring 2024 51

Modified Typing Rules

Design Principles of Programming Languages, Spring 2024 52

Subtyping rules

Design Principles of Programming Languages, Spring 2024 53

Subtyping and Arrays
Similarly...

This is regarded (even by the Java designers) as a mistake in the
design

Design Principles of Programming Languages, Spring 2024 54

Capabilities
Other kinds of capabilities can be treated similarly, e.g.,

─ send and receive capabilities on communication channels
─ encrypt/decrypt capabilities of cryptographic keys
─ ...

Design Principles of Programming Languages, Spring 2024 55

Base Types
For language with a rich set of base types, it’s better to introduce
primitive subtype relations among them

─ e.g., Bool <: Nat
─ Bool ，0/1

Design Principles of Programming Languages, Spring 2024 56

Intersection and Union
Types

Intersection Types
The inhabitants of T1 ∧ T2 are terms belonging to both T1 and T2 — i.e.,
T1 ∧ T2 is an order-theoretic meet (greatest lower bound) of T1 and T2.

Design Principles of Programming Languages, Spring 2024 58

Intersection Types
Intersection types permit a very flexible form of finitary overloading.

This form of overloading is extremely powerful.
Every strongly normalizing untyped lambda-term can be typed in the simply
typed lambda-calculus with intersection types (a term is typable iff its evaluation
terminates)

type reconstruction problem is undecidable (cf. ch22)

Intersection types have not been used much in language designs (too
powerful!), but are being intensively investigated as type systems for
intermediate languages in highly optimizing compilers (cf. Church
project).
Design Principles of Programming Languages, Spring 2024 59

Union types
Union types are also useful.

T1 ∨ T2 is an untagged (non-disjoint) union of T1 and T2.
No tags: no case construct. The only operations we can safely perform
on elements of T1 ∨ T2 are ones that make sense for both T1 and T2.

Note well: untagged union types in C are a source of type safety
violations precisely because they ignores this restriction, allowing any
operation on an element of T1 ∨ T2 that makes sense for either T1 or T2.

Union types are being used recently in type systems for XML
processing languages (cf. Xduce, Xtatic).
Design Principles of Programming Languages, Spring 2024 60

Varieties of Polymorphism

• Parametric polymorphism (ML-style)

• Subtype polymorphism (OO-style)

• Ad-hoc polymorphism (overloading)

Design Principles of Programming Languages, Spring 2024 61

HW for Chap15
• 15.2.2
• 15.3.2
• 15.5.2

Design Principles of Programming Languages, Spring 2024 62

	编程语言的设计原理�Design Principles of �Programming Languages
	Part III�Chap 15: Subtyping
	幻灯片编号 3
	Motivation
	Motivation
	Subsumption
	Subtyping
	Example
	The Subtype Relation: Records
	The Subtype Relation: Records
	The Subtype Relation: Records
	Examples
	Examples
	Order of fields in Records
	The Subtype Relation: Records
	Variations
	幻灯片编号 17
	The Subtype Relation: Arrow types
	The Subtype Relation: Arrow types
	The Subtype Relation: Arrow types
	The Subtype Relation: Top
	Subtype Relation: General rules
	Subtype Relation
	编程语言的设计原理�Design Principles of �Programming Languages
	Part III�Chap 15: Subtyping
	幻灯片编号 26
	Recap for subtyping
	Recap for subtyping
	Subtype Relation: General rules
	Subtype Relation
	幻灯片编号 31
	Safety
	Aside: Syntax-directed rules
	An Inversion Lemma for subtyping
	Inversion Lemma for Typing
	Preservation
	Preservation - Subsumption case
	Preservation - Application case
	Preservation - Application case
	Preservation - Application case
	Preservation - Application case
	Progress
	幻灯片编号 43
	Ascription and Casting
	Ascription and Casting
	Subtyping and Variants
	Subtyping and Lists
	Subtyping and References
	Subtyping and References
	References again
	References again
	Modified Typing Rules
	Subtyping rules
	Subtyping and Arrays
	Capabilities
	Base Types
	幻灯片编号 57
	Intersection Types
	Intersection Types
	Union types
	Varieties of Polymorphism
	HW for Chap15

