
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2024

Part III

Chap 15: Subtyping

Subsumption

Subtype relation

Properties of subtyping and typing

Subtyping and other features

Intersection and union types

Subtyping

Motivation

With the usual typing rule for applications

is the term

right?

It is not well typed

Design Principles of Programming Languages, Spring 2024 4

Motivation

With the usual typing rule for applications

the term

is not well typed.

This is silly: what we’re doing is passing the function a better argument

than it needs

Design Principles of Programming Languages, Spring 2024 5

Subsumption

More generally: some types are better than others, in the sense that a

value of one can always safely be used where a value of the other is

expected

We can formalize this intuition by introducing:

Principle of safe substitution

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of type S

can also be regarded as having type T, i.e.,

Design Principles of Programming Languages, Spring 2024 6

Subtyping

Intuitions: S <: T means ...

“An element of S may safely be used wherever an element of T is

expected” (Official)

• S is “better than” T

• S is a subset of T

• S is more informative / richer than T

Design Principles of Programming Languages, Spring 2024 7

Example

define subtyping between record types, so that, for example

{𝑥:𝑁𝑎𝑡, 𝑦: 𝑁𝑎𝑡} <: {𝑥: 𝑁𝑎𝑡}

by subsumption,

⊢ {𝑥 = 0, 𝑦 = 1} ∶ {𝑥:𝑁𝑎𝑡}

and hence

is well typed.

Back to the example：

Design Principles of Programming Languages, Spring 2024 8

The Subtype Relation: Records

“Width subtyping” : forgetting fields on the right

(S-RcdWidth)

Intuition:

{𝑥: 𝑁𝑎𝑡} is the type of all records with at least a numeric 𝑥 field

𝑙𝑖: 𝑇𝑖
𝑖∈1..𝑛+𝑘 <: 𝑙𝑖: 𝑇𝑖

𝑖∈1..𝑛

Design Principles of Programming Languages, Spring 2024 9

The Subtype Relation: Records

“Width subtyping” (forgetting fields on the right):

(S-RcdWidth)

Intuition:

• {𝑥: 𝑁𝑎𝑡} is the type of all records with at least a numeric 𝑥 field.

• Note that the record type with more fields is a subtype of the record
type with fewer fields

• Reason: the type with more fields places stronger constraints on
values, so it describes fewer values

𝑙𝑖: 𝑇𝑖
𝑖∈1..𝑛+𝑘 <: 𝑙𝑖: 𝑇𝑖

𝑖∈1..𝑛

Design Principles of Programming Languages, Spring 2024 10

The Subtype Relation: Records

“Depth subtyping” within fields:

The types of individual fields may change, as long as the type of each

corresponding field in the two records are in the subtype relation

Design Principles of Programming Languages, Spring 2024 11

Examples

Design Principles of Programming Languages, Spring 2024 12

Examples

We can also use S-RcdDepth to refine the type of just a single record

field (instead of refining every field), by using S-REFL to obtain trivial

subtyping derivations for other fields.

𝑎 ∶𝑁𝑎𝑡, 𝑏 ∶𝑁𝑎𝑡 <: 𝑎 ∶𝑁𝑎𝑡
S−RCDWIDTH

𝑚 ∶𝑁𝑎𝑡 <: 𝑚 ∶𝑁𝑎𝑡
S−REFL

𝑥 ∶ 𝑎:𝑁𝑎𝑡, 𝑏:𝑁𝑎𝑡 , 𝑦 ∶ 𝑚:𝑁𝑎𝑡 <: {𝑥 ∶ 𝑎 ∶𝑁𝑎𝑡 , 𝑦 ∶ 𝑚 ∶𝑁𝑎𝑡 }
S−RcdDepth

Design Principles of Programming Languages, Spring 2024 13

Order of fields in Records

The order of fields in a record doesn’t make any difference to how we

can safely use it, since the only thing that we can do with records

(projecting their fields) is insensitive to the order of fields

S-RcdPerm tells us that

{c:Top, b: Bool, a: Nat} <: {a: Nat, b: Bool, c:Top}

and

{a: Nat, b: Bool, c:Top} <: {c:Top, b: Bool, a: Nat}

Design Principles of Programming Languages, Spring 2024 14

The Subtype Relation: Records

Permutation of fields:

Using S-RcdPerm together with S-RcdWidth & S-Trans allows us to

drop arbitrary fields within records

Design Principles of Programming Languages, Spring 2024 15

Variations

Real languages often choose not to adopt all of these record subtyping

rules, e.g., in Java,

─ A subclass may not change the argument or result types of a

method of its superclass (i.e., no depth subtyping)

─ Each class has just one superclass (“single inheritance” of classes)

each class member (field or method) can be assigned a single index,

adding new indices “on the right” as more members are added in

subclasses (i.e., no permutation for classes)

─ A class may implement multiple interfaces (“multiple inheritance” of

interfaces) (i.e., permutation is allowed for interfaces)

Design Principles of Programming Languages, Spring 2024 16

Subtyping for

functional type

The Subtype Relation: Arrow types

A high-order language, functions can be passed as arguments to other

functions

Design Principles of Programming Languages, Spring 2024 18

The Subtype Relation: Arrow types

Note the order of 𝑇1 and 𝑆1 in the first premise.

The subtype relation is

─ contravariant in the left-hand sides of arrows

─ covariant in the right-hand sides of arrows

Design Principles of Programming Languages, Spring 2024 19

The Subtype Relation: Arrow types

Intuition: if we have a function f of type S1 ⟶ S2,

1. f accepts elements of type S1; clearly, f will also accept elements of

any subtype T1 of S1

2. the type of f also tells us that it returns elements of type S2; then

these results can be viewed as belonging to any supertype T2 of S2

i.e., any function f of type 𝑆1 ⟶ 𝑆2 can also be viewed as having type

𝑇1 ⟶ 𝑇2

Design Principles of Programming Languages, Spring 2024 20

The Subtype Relation: Top

It is convenient to have a type that is a

supertype of every type

We introduce a new type constant Top, plus a rule that makes Top a

maximum element of the subtype relation

i.e,

Cf. Object in Java.

Design Principles of Programming Languages, Spring 2024 21

Subtype Relation: General rules
A subtyping is a binary relation between types that is closed under the

following rules

Design Principles of Programming Languages, Spring 2024 22

Subtype Relation

Design Principles of Programming Languages, Spring 2024 23

