
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2024

Recap

• Core messages in the previous lecture

─ (Untyped) programming languages are defined by syntax and

semantics

─ Syntax is often specified by grammars

⚫ Inductively vs structural induction

─ Semantics can be specified in three ways, and this book chooses

operational semantics expressed as evaluation rules

─ Big step vs small step semantics

Design Principles of Programming Language, Spring 2024 2

Abstract Machines

• An abstract machine consists of:

─ a set of states

─ a transition relation on states, written ⟶

“𝑡 ⟶ 𝑡′ ” is read as “𝑡 evaluates to 𝑡′ in one step”.

• A state records all the information in the abstract machine at a given

moment.

─ e.g., an abstract-machine-style description of a conventional

microprocessor would include the program counter, the contents of the

registers, the contents of main memory, and the machine code

program being executed.

Design Principles of Programming Language, Spring 2024 3

Operational semantics for Booleans

• Syntax of terms and values

Design Principles of Programming Language, Spring 2024 4

Evaluation relation for Booleans

• The evaluation relation 𝑡 ⟶ 𝑡′ is the smallest relation closed under
the following rules:

Design Principles of Programming Language, Spring 2024 5

Evaluation relation for Booleans

• Computation rules

• Computation rules perform “real” computation steps

• Congruence rules determine where computation rules can be applied
next

• Congruence rules

Design Principles of Programming Language, Spring 2024 6

Evaluation relation for Booleans

⟶ is the smallest two-place relation closed under the following rules:

If the pair 𝑡, 𝑡′ is an evaluation relation, then the evaluation statement or
judgement 𝑡 ⟶ 𝑡′ is said to be derivable

Design Principles of Programming Language, Spring 2024 7

Derivation

• “Justification” for a particular pair of terms that are in the

evaluation relation in the form of a tree.

─ These trees are called derivation trees (or just derivations).

─ The final statement in a derivation is its conclusion.

─ We say that the derivation is a witness for its conclusion (or a proof of

its conclusion) — it records all the reasoning steps that justify the

conclusion.

Design Principles of Programming Language, Spring 2024 8

Induction on Derivation

• Write proofs about evaluation “by induction on derivation trees.”

• Given an arbitrary derivation 𝒟 with conclusion 𝑡 ⟶ 𝑡′ , we assume the

desired result for its immediate sub-derivation (if any) and proceed by

a case analysis of the final evaluation rule used in constructing the

derivation tree.

Design Principles of Programming Language, Spring 2024 9

Induction on Derivation

Theorem [Determinacy of one-step evaluation]:

If t → t′. and t → t′′, then t′ = t′′.

Proof. By induction on derivation of t → t′.

If the last rule used in the derivation of t → t′ is E-IfTrue, then t has the
form

if true then t2 else t3.

It can be shown that there is only one way to reduce such t.

……

10Design Principles of Programming Language, Spring 2024

Normal Form

Definition: A term t is in normal form if no evaluation rule applies to it.

Theorem: Every value is in normal form.

Theorem: If t is in normal form, then t is a value.

Prove by contradiction (then by structural induction).

11Design Principles of Programming Language, Spring 2024

Multi-step Evaluation Relation

Definition: The multi-step evaluation relation →∗ is the reflexive,

transitive closure of one-step evaluation.

Theorem [Uniqueness of normal forms]:

If t →∗ u and t →∗ u′, where u and u′ are both normal forms, then

u = u′.

Theorem [Termination of Evaluation]:

For every term t there is some normal form t′ such that t →∗ t′.

12Design Principles of Programming Language, Spring 2024

Extending Evaluation to Numbers

13Design Principles of Programming Language, Spring 2024

Big-step Evaluation

14Design Principles of Programming Language, Spring 2024

Stuckness

Definition: A closed term is stuck if it is in normal form but not a value.

Examples:

─ succ true

─ succ false

─ if zero then true else false

15Design Principles of Programming Language, Spring 2024

Summary

• How to define syntax?

─ Grammar, Inductively, Inference Rules, Generative

• How to define semantics?

─ Operational, Denotational, Axomatic

• How to define evaluation relation (operational semantics)?

─ Small-step/Big-step evaluation relation

─ Normal form

─ Confluence/termination

16Design Principles of Programming Language, Spring 2024

Chapter 5
The Untyped Lambda Calculus

What is lambda calculus for ?

Basics: Syntax and Operational semantics

Programming in the Lambda Calculus

Formalities (formal definitions)

Why Lambda calculus?

• Suppose we want to describe a function that adds three to any

number we pass it.

• We might write

plus3 x = succ (succ (succ x))

i.e., plus3 x is succ (succ (succ x))

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields succ (succ (succ x)).

Design Principles of Programming Language, Spring 2024 18

Story of Turing and Church

Alan Turing
Turing Machine

Turing computability

Alonzo Church
Lambda Calculus
lambda definable

Church’ thesis

Design Principles of Programming Language, Spring 2024 19

What is Lambda calculus for?

• A core calculus (used by Landin) for

─ capturing the language’s essential mechanisms, with a collection

of convenient derived forms whose behavior is understood by

translating them into the core.

─ modeling programming language, as the foundation of many real-

world programming language designs (including ML, Haskell,

Scheme, Lisp, ...) , and being central to contemporary computer

science.

Design Principles of Programming Language, Spring 2024 20

Lambda calculus

• A formal system devised by Alonzo Church in the 1930’s as a model

for computability

─ all computation is reduced to the basic operations of function

abstraction and application.

• A very simple but very powerful language based on pure abstraction,

with

─ Turing complete

─ Higher order (functions as data)

Design Principles of Programming Language, Spring 2024 21

Lambda calculus

• Widely used in the specification of programming language features,

in language design and implementation, and in the study of type

systems

• Important due to the fact that it can be viewed simultaneously as

─ a simple programming language in which computations can be

described and

─ a mathematical object about which rigorous statements can be

proved

• Can be enriched in a variety of ways

Design Principles of Programming Language, Spring 2024 22

Basics

Syntax

Scope

Operational semantics

Syntax

• The lambda calculus (or λ-calculus) embodies this kind of function

definition and application in the purest possible form

• Terminology:

─ terms in the pure λ-calculus are often called λ-terms

─ terms of the form λx. t are called λ-abstractions or just abstractions

Design Principles of Programming Language, Spring 2024 24

Syntax

• Recall the function

plus3 x = succ (succ (succ x))

• Write it with λ-terms as:

plus3 = λx. succ (succ (succ x))

Note:

This function exists independent of the name plus3

λx.t is written “fun x → t” in OCaml.

Design Principles of Programming Language, Spring 2024 25

Abstract and Concrete Syntax

• It is useful to distinguish the syntax of programming languages at

two levels of structure:

─ Concrete syntax (or surface syntax) of the language refers to the

strings of characters that programmers directly read and write

─ Abstract syntax is a much simpler internal representation of

programs as labeled trees (called abstract syntax trees or ASTs)

• The tree representation renders the structure of terms immediately

obvious, making it a natural fit for the complex manipulations involved in

both rigorous language definitions (and proofs about them) and the

internals of compilers and interpreters.

Design Principles of Programming Language, Spring 2024 26

Abstract Syntax Trees

• (s t) u

Design Principles of Programming Language, Spring 2024 27

Syntactic conventions

• The λ -calculus provides only one-argument functions, all multi-

argument functions must be written in curried style.

• The following conventions make the linear forms of terms easier to

read and write:

─ Application associates to the left

e.g., t u v means (t u) v, not t (u v)

─ Bodies of λ- abstractions extend as far to the right as possible

e.g., λx. λy.x y means λx. (λy. x y), not λx. (λy. x) y

Design Principles of Programming Language, Spring 2024 28

Abstract Syntax Trees

• (s t) u (or simply written as s t u)

Design Principles of Programming Language, Spring 2024 29

Abstract Syntax Trees

• λx. (λy. ((x y) x))

(or simply written as λx. λy. x y x)

Design Principles of Programming Language, Spring 2024 30

Scope

• An occurrence of the variable 𝑥 is said to be bound when it occurs in

the body t of an abstraction λx.t, i.e.,

─ the λ-abstraction term λ𝑥.t binds the variable 𝑥 , and the scope of

this binding is the body t.

─ λ𝑥 is a binder whose scope is t.

─ a binder can be renamed as necessary

• so-called: alpha-renaming

• e.g., λ𝑥.x = λy. y

Design Principles of Programming Language, Spring 2024 31

Scope

• An occurrence of 𝑥 is free if it appears in a position where it is not bound

by an enclosing abstraction on 𝑥.

─ a term with no free variable is said to be closed.

─ closed terms are also called combinators.

• Exercises: Find free variable occurrences from the following terms:

─ x y,

─ λx.x

─ λy.x y

─ (λx.x) x

─ (λx.x) (λy.y x)

─ (λx.x) (λx.x)

─ (λx.(λy.x y)) y
Design Principles of Programming Language, Spring 2024 32

Operational Semantics

• If the function λx.t is applied to t2, we substitute all free occurrences

of 𝑥 in t with 𝑡2.

─ If the substitution would bring a free variable of t2 in an expression

where this variable occurs bound, we rename the bound variable

before performing the substitution.

• Examples:

(λx.x) (λx.x) → ?

(λx.(λy.x y)) y → ?

(λx.(λy.(x (λx.x y)))) y → ?

Design Principles of Programming Language, Spring 2024 33

Operational Semantics

• Beta-reduction: the only computation (substitution)

─ the term obtained by replacing all free occurrences of x in t12 by t2

─ a term of the form (λx.t) v — a λ-abstraction applied to a value — is

called a redex (short for “reducible expression”)

─ the operation of rewriting a redex according to the above rule is

called beta-reduction

• Examples:

λx. x y → y

(λx. x (λx. x)) (u r) → u r (λx. x)
Design Principles of Programming Language, Spring 2024 34

Values

Design Principles of Programming Language, Spring 2024 35

Evaluation Strategies

• Full beta-reduction

─ any redex may be reduced at any time.

• e. g.，id = λx.x, consider

(λx.x) ((λx.x) (λz. (λx.x) z))

─ we can apply full beta reduction to any of the following underlined

redexes:

Note: lambda calculus is confluent under full beta-reduction.
Ref. Church-Rosser property.

Design Principles of Programming Language, Spring 2024 36

innermost

middle

outermost

Evaluation Strategies

• The normal order strategy

─ The leftmost, outmost redex is always reduced first.

• try to reduce always the leftmost expression of a series of applications, and

continue until no further reductions are possible

─ the evaluation relation under this strategy is actually a partial

function: each term t evaluates in one step to at most one term t’

Design Principles of Programming Language, Spring 2024 37

Evaluation Strategies

• call-by-name strategy

─ a more restrictive normal order strategy, allowing no reduction

inside abstraction.

─ stop before the last and regard λz. id z as a normal form

─ call-by-need

Design Principles of Programming Language, Spring 2024 38

Evaluation Strategies

• call-by-value strategy

─ only outermost redexes are reduced and

─ where a redex is reduced only when its right-hand side has already

been reduced to a value

• value: a term that cannot be reduced any more.

Design Principles of Programming Language, Spring 2024 39

Evaluation Strategies

• call-by-value strategy

─ strict in the sense that the arguments to functions are always evaluated,

whether or not they are used by the body of the function.

─ reflects standard conventions found in most mainstream languages.

─ adopted in our course

• The choice of evaluation strategy actually makes little difference when

discussing type systems.

─ The issues that motivate various typing features, and the techniques
used to address them, are much the same for all the strategies.

Design Principles of Programming Language, Spring 2024 40

Operational Semantics

• Computation rule

• Congruence rules

Design Principles of Programming Language, Spring 2024 41

Lambda Calculus

• Once we have λ-abstraction and application, we can throw away all

the other language primitives and still have left a rich and powerful

programming language.

• Everything is a function:

─ Variables always denote functions

─ Functions always take other functions as parameters

─ The result of a function is always a function

Design Principles of Programming Language, Spring 2024 42

Abstractions over Functions

• Consider the λ-abstraction

g = λf. f (f (succ 0))

─ the parameter variable f is used in the function position in the body of g.

─ terms like g are called higher-order functions.

─ If we apply g to an argument like plus3, the “substitution rule” yields a

nontrivial computation:

Design Principles of Programming Language, Spring 2024 43

Programming
in the Lambda Calculus

Multiple Arguments

Church Booleans

Pairs

Church Numerals

Recursion

Multiple Arguments

f (x, y) = t （i.e., f x y)

currying

(f x) y = t

λ-encoding

f = λx. (λy. t)

• λ-calculus provides only one-argument functions, all multi-argument

functions must be written in curried style.

Design Principles of Programming Language, Spring 2024 45

Multiple Arguments

• In general, λx. λy. t is a function that, given a value v for x, yields a

function that, given a value u for 𝑦, yields t with v in place of x and u

in place of y.

─ i.e., λx. λy. t is a two-argument function.

• λ-abstraction that does nothing but immediately yields another

abstraction — is very common in the λ-calculus.

Design Principles of Programming Language, Spring 2024 46

Church Booleans

• Boolean values can be encoded as:

𝑡𝑟𝑢 = 𝜆𝑡. 𝜆𝑓. 𝑡

𝑓𝑙𝑠 = 𝜆𝑡. 𝜆𝑓. 𝑓

Design Principles of Programming Language, Spring 2024 47

Church Booleans

• Boolean conditional and operators can be encoded as:

test = λl. λm. λn. l m n

Design Principles of Programming Language, Spring 2024 48

Church Booleans

─ a function that, given a boolean value v, returns fls if v is tru and

tru if v is fls.

• How to define not ?

Design Principles of Programming Language, Spring 2024 49

Church Booleans

• Boolean conditional

─ and is a function that, given two boolean values v and w, returns w

if v is tru and fls if v is fls.

─ thus and v w yields tru if both v and w are tru, and fls if either v or

w is fls.

• and operators can be encoded as:

Design Principles of Programming Language, Spring 2024 50

and = λb. λc. b c fls

Church Booleans

• How to define or ?

𝑜𝑟 = 𝜆𝑎. 𝜆𝑏. 𝑎 𝑡𝑟𝑢 𝑏

Design Principles of Programming Language, Spring 2024 51

Pairs

• Encoding

• Example

Design Principles of Programming Language, Spring 2024 52

Church Numerals

• Encoding Church numerals

─ Basic idea: represent the number 𝑛 by a function that “repeats

some action 𝑛 times”, making numbers into active entities

─ each number 𝑛 is represented by a term cn taking two arguments,

s and z (for “successor” and “zero”), and applies s, n times, to z.

Design Principles of Programming Language, Spring 2024 53

Functions on Church Numerals

• Successor

suc = λn. λs. λz. s (n s z);

• addition

plus = λm. λn. λs. λz. m s (n s z);

• Multiplication

times = λm. λn. m (plus n) c0;

• Zero test

iszro = λm. m (λx. fls) tru

Design Principles of Programming Language, Spring 2024 54

Both suc and plus take some Church numeral (n for suc and m,n for plus) and yield
another Church numeral —i.e., a function- that accepts arguments s and z, applies
s iteratively to z

Church Numerals

• Can you define minus?

─ Suppose we have pred, can you define minus?

• 𝜆𝑚. 𝜆𝑛. 𝑛 𝑝𝑟𝑒𝑑 𝑚

• Can you define pred?

─ 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑛 𝜆𝑔. 𝜆ℎ. ℎ 𝑔 𝑠 𝜆𝑢. 𝑧 (𝜆𝑢. 𝑢)

─ 𝜆𝑢. 𝑧 -- a wrapped zero

─ (𝜆𝑢. 𝑢) – the last application to be skipped

─ 𝜆𝑔. 𝜆ℎ. ℎ 𝑔 𝑠 -- apply h if it is the last application, otherwise apply g

─ Try n = 0, 1, 2 to see the effect

Design Principles of Programming Language, Spring 2024 55

Church Numerals

• predecessor

z𝑧 = pair c0 c0

ss = λp. pair (snd p) (scc (snd p))

prd = λm. fst (m ss zz)

Design Principles of Programming Language, Spring 2024 56

Church Numerals

• We have seen that booleans, numbers, and the operations on them can be

encoded in the pure lambda-calculus.

• When working with examples, however, it is often convenient to include

the primitive booleans and numbers (and possibly other data types) as well.

• It is easy to convert back and forth between the two different

implementations of booleans and numbers.

─ e.g., to turn a Church boolean into a primitive Boolean

realbool = λb. b true false;

─ To go the other direction, we use an if expression:

churchbool = λb. if b then tru else fls

Design Principles of Programming Language, Spring 2024 57

Normal forms

• Recall

─ A normal form is a term that cannot take an evaluation step.

─ A stuck term is a normal form that is not a value.

• Are there any stuck terms in the pure 𝜆-calculus?

• Does every term evaluate to a normal form?

Design Principles of Programming Language, Spring 2024 58

Divergence

• Note that omega evaluates in one step to itself !

─ evaluation of omega never reaches a normal form: it diverges.

• Terms with no normal form are said to diverge.

• Divergent computation does not seem very useful in itself. However,

there are variants of omega that are very useful ...

Design Principles of Programming Language, Spring 2024 59

Omega = （λx. x x）(λx. x x)

Recursion
in the Lambda Calculus

Recursion

• Suppose f is some 𝜆-abstraction, and consider the following term:

Yf = (λx. f (x x)) (λx. f (x x));

Yf =

Design Principles of Programming Language, Spring 2024 61

Recursion

• Yf is still not very useful, since (like omega), all it does is diverge.

• Is there any way we could “slow it down”?

Design Principles of Programming Language, Spring 2024 62

Recursion: Delaying divergence

delay = λy. omega

• Note that delay is a value — it will only diverge when actually

applying it to an argument, i.e., we can safely pass it as an argument

to other functions, return it as a result from functions, etc.

Design Principles of Programming Language, Spring 2024 63

(λp. fst (pair p fls) tru) delay
⟶

fst (pair delay fls) tru
⟶

delay tru
⟶

omega
⟶
……

Recursion: Delaying divergence

• Here is a variant of omega in which the delay and divergence are a

bit more tightly intertwined:
omegav =

λy. λx. λy. x x y λx. λy. x x y y

• Note that omegav is a normal form. However, if we apply it to any
argument v, it diverges:

Design Principles of Programming Language, Spring 2024 64

omegav v=
(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

⟶
(λx. (λ y. x x y)) (λx. (λy. x x y)) v

⟶
λy. (λx. (λy. x x y)) (λx. (λ y. x x y)) y) v

=
omegav v

Recursion: another Delayed variant
• Suppose f is a function. Define

Zf = λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

by combining the “added f” from Yf with the “delayed divergence” of
omegav.

• apply Zf to an argument v, something interesting happens:

Design Principles of Programming Language, Spring 2024 65

Zf v=
(λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

⟶
(λx. f (λy. x x y)) (λx. F (λy. x x y)) v

⟶
f (λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

=
f Zf v

Recursion: another Delayed variant

Design Principles of Programming Language, Spring 2024 66

Zf v=
(λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

⟶
(λx. f (λy. x x y)) (λx. F (λy. x x y)) v

⟶
f (λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

=
f Zf v

• Since Zf and v are both values, the next computation step will be the

reduction of f Zf — that is, f gets to do some computation before we

“diverge”

Recursion: Generic Z

Design Principles of Programming Language, Spring 2024 67

If we define
Z = λf. Zf

i.e.,
Z =

λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

then we can obtain the behavior of Zf for any f we like, simply by

applying Z to f.

Z f ⟶ Zf

Recursion

• Fixed-point combinator

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

fix f = f (λy. (fix f) y)

Design Principles of Programming Language, Spring 2024 68

Z here is essentially the same as the fix given in the textbook

• Z = λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

Recursion

• Basic Idea:

A recursive definition:

h = <body containing h>

g = λf . <body containing f >

h = fix g

Design Principles of Programming Language, Spring 2024 69

Recursion

• Example:

fac = λn. if eq n c0

then c1

else times n (fac (pred n)

g = λf . λn. if eq n c0

then c1

else times n (f (pred n)

fac = fix g

Exercise: Check that fac c3 → c6.
Design Principles of Programming Language, Spring 2024 70

Recursion

• Assuming call-by-value

─ (x x) in Yf is not a value

─ while (λy. x x y) is a value

─ Yf will diverge for any f

Design Principles of Programming Language, Spring 2024 71

fix = λf. λx. f λy. x x y λx. f λy. x x y

Yf = (λx. f (x x)) (λx. f (x x));

Formalities
(Formal Definitions)

Syntax (free variables)

Substitution

Operational Semantics

Syntax

• Definition [Terms]:

Let 𝒱 be a countable set of variable names.

The set of terms is the smallest set 𝒯 such that

1. x ∈ 𝒯 for every x ∈ 𝒱;

2. if t1 ∈ 𝒯 and x ∈ 𝒱, then λx.t1 ∈ 𝒯;

3. if t1 ∈ 𝒯 and t2 ∈ 𝒯, then t1 t2 ∈ 𝒯.

Design Principles of Programming Language, Spring 2024 73

Syntax

• Definition: Free Variables of term t，written as FV(t):

FV(x) = {x}

FV(λx.t1) = FV(t1) \ {x}

FV(t1 t2) = FV(t1) ∪ FV(t2)

Design Principles of Programming Language, Spring 2024 74

• Please prove that |FV(t)| size(t) for every term t

Substitution

Example:
[x ↦ y z] (𝜆y. x y)

= [x ↦ y z] (λw. x w)
= λw. y z w

Alpha-conversion : Terms that differ only in the names of bound
variables are interchangeable in all contexts.

Design Principles of Programming Language, Spring 2024 75

Operational Semantics

Design Principles of Programming Language, Spring 2024 76

Summary

• What is lambda calculus for?

─ A core calculus for capturing language essential mechanisms

─ Simple but powerful

• Syntax

─ Function definition + function application

─ Binder, scope, free variables

• Operational semantics

─ Substitution

─ Evaluation strategies: normal order, call-by-name, call-by-value

Design Principles of Programming Language, Spring 2024 77

Homework

• Read through and understand Chapter 5.

• Do exercise 5.3.6 & 5.3.7 in Chapter 5.

Design Principles of Programming Language, Spring 2024 78

