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Recap

• Core messages in the previous lecture

─ (Untyped) programming languages are defined by syntax and

semantics

─ Syntax is often specified by grammars

⚫ Inductively vs structural induction

─ Semantics can be specified in three ways, and this book chooses

operational semantics expressed as evaluation rules

─ Big step vs small step semantics
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Abstract Machines

• An abstract machine consists of:

─ a set of states

─ a transition relation on states, written  ⟶

“𝑡 ⟶ 𝑡′ ” is read as “𝑡 evaluates to 𝑡′ in one step”.

• A state records all the information in the abstract machine at a given

moment.

─ e.g., an abstract-machine-style description of a conventional

microprocessor would include the program counter, the contents of the

registers, the contents of main memory, and the machine code

program being executed.
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Operational semantics for Booleans

• Syntax of terms and values
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Evaluation relation for Booleans

• The evaluation relation 𝑡 ⟶ 𝑡′ is the smallest relation closed under 
the following rules:
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Evaluation relation for Booleans

• Computation rules

• Computation rules perform “real” computation steps

• Congruence rules determine where computation rules can be applied
next

• Congruence rules
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Evaluation relation for Booleans

⟶ is the smallest two-place relation closed under the following rules:

If the pair 𝑡, 𝑡′ is an evaluation relation, then the evaluation statement or 
judgement 𝑡 ⟶ 𝑡′ is said to be derivable
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Derivation

• “Justification” for a particular pair of terms that are in the

evaluation relation in the form of a tree.

─ These trees are called derivation trees (or just derivations).

─ The final statement in a derivation is its conclusion.

─ We say that the derivation is a witness for its conclusion (or a proof of

its conclusion) — it records all the reasoning steps that justify the

conclusion.
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Induction on Derivation

• Write proofs about evaluation “by induction on derivation trees.”

• Given an arbitrary derivation 𝒟 with conclusion 𝑡 ⟶ 𝑡′ , we assume the

desired result for its immediate sub-derivation (if any) and proceed by

a case analysis of the final evaluation rule used in constructing the

derivation tree.
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Induction on Derivation

Theorem [Determinacy of one-step evaluation]: 

If t → t′. and t → t′′,  then t′ = t′′. 

Proof. By induction on derivation of t → t′.

If the last rule used in the derivation of t → t′ is E-IfTrue, then t has the 
form 

if true then t2 else t3.

It can be shown that there is only one way to reduce such t.

……
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Normal Form

Definition: A term t is in normal form if no evaluation rule applies to it.

Theorem: Every value is in normal form.

Theorem: If t is in normal form, then t is a value. 

Prove by contradiction (then by structural induction).
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Multi-step Evaluation Relation

Definition: The multi-step evaluation relation →∗ is the reflexive,

transitive closure of one-step evaluation.

Theorem [Uniqueness of normal forms]:

If t →∗ u and t →∗ u′, where u and u′ are both normal forms, then

u = u′.

Theorem [Termination of Evaluation]:

For every term t there is some normal form t′ such that t →∗ t′.
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Extending Evaluation to Numbers
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Big-step Evaluation
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Stuckness

Definition: A closed term is stuck if it is in normal form but not a value.

Examples:

─ succ true

─ succ false

─ if zero then true else false
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Summary

• How to define syntax?

─ Grammar, Inductively, Inference Rules, Generative

• How to define semantics?

─ Operational,  Denotational,  Axomatic

• How to define evaluation relation (operational semantics)?

─ Small-step/Big-step evaluation relation

─ Normal form

─ Confluence/termination
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Chapter 5 
The Untyped Lambda Calculus

What is lambda calculus for ?

Basics: Syntax and Operational semantics

Programming in the Lambda Calculus

Formalities (formal definitions)



Why Lambda calculus?

• Suppose we want to describe a function that adds three to any

number we pass it.

• We might write

plus3 x = succ (succ (succ x))

i.e.,  plus3 x  is   succ (succ (succ x)) 

Q:  What is plus3 itself?

A:   plus3 is the function that, given x, yields succ (succ (succ x)).
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Story of Turing and Church

Alan Turing
Turing Machine

Turing computability

Alonzo Church
Lambda Calculus
lambda definable 

Church’ thesis
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What is Lambda calculus for?

• A core calculus (used by Landin) for

─ capturing the language’s essential mechanisms, with a collection 

of convenient derived forms whose behavior is understood by 

translating them into the core.

─ modeling programming language, as the foundation of many real-

world programming language designs (including ML, Haskell, 

Scheme, Lisp, ...) , and being central to contemporary computer 

science.
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Lambda calculus

• A formal system devised by Alonzo Church in the 1930’s as a model 

for computability

─ all computation is reduced to the basic operations of function 

abstraction and application. 

• A very simple but very powerful language based on pure abstraction, 

with 

─ Turing complete

─ Higher order (functions as data)
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Lambda calculus

• Widely used in the specification of programming language features,

in language design and implementation, and in the study of type

systems

• Important due to the fact that it can be viewed simultaneously as

─ a simple programming language in which computations can be

described and

─ a mathematical object about which rigorous statements can be

proved

• Can be enriched in a variety of ways
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Basics

Syntax

Scope

Operational semantics 



Syntax

• The lambda calculus (or λ-calculus) embodies this kind of function 

definition and application in the purest possible form 

• Terminology:

─ terms in the pure λ-calculus are often called λ-terms

─ terms of the form λx. t are called λ-abstractions or just abstractions
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Syntax

• Recall the function 

plus3 x = succ (succ (succ x))

• Write it with λ-terms as:

plus3 = λx. succ (succ (succ x))

Note:  

This function exists independent of the name plus3

λx.t  is written “fun x → t” in OCaml.
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Abstract and Concrete Syntax

• It is useful to distinguish the syntax of programming languages at

two levels of structure:

─ Concrete syntax (or surface syntax) of the language refers to the

strings of characters that programmers directly read and write

─ Abstract syntax is a much simpler internal representation of

programs as labeled trees (called abstract syntax trees or ASTs)

• The tree representation renders the structure of terms immediately

obvious, making it a natural fit for the complex manipulations involved in

both rigorous language definitions (and proofs about them) and the

internals of compilers and interpreters.
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Abstract Syntax Trees

• (s t) u
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Syntactic conventions

• The λ -calculus provides only one-argument functions, all multi-

argument functions must be written in curried style.

• The following conventions make the linear forms of terms easier to

read and write:

─ Application associates to the left

e.g., t u v means (t u) v, not t (u v)

─ Bodies of λ- abstractions extend as far to the right as possible

e.g., λx. λy.x y means λx. (λy. x y), not λx. (λy. x) y
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Abstract Syntax Trees

• (s t) u     (or simply written as s t u)
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Abstract Syntax Trees

• λx. (λy. ((x y) x)) 

(or simply written as λx. λy. x y x )

Design Principles of Programming Language, Spring 2024 30



Scope

• An occurrence of the variable 𝑥 is said to be bound when it occurs in 

the body t of an abstraction λx.t, i.e., 

─ the λ-abstraction term λ𝑥.t binds the variable 𝑥 , and the scope of 

this binding is the body t.

─ λ𝑥 is a binder whose scope is t. 

─ a binder can be renamed as necessary

• so-called: alpha-renaming

• e.g., λ𝑥.x = λy. y
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Scope

• An occurrence of 𝑥 is free if it appears in a position where it is not bound 

by an enclosing abstraction on 𝑥. 

─ a term with no free variable is said to be closed.

─ closed terms are also called combinators.

• Exercises: Find free variable occurrences from the following terms: 

─ x y, 

─ λx.x

─ λy.x y

─ (λx.x) x

─ (λx.x) (λy.y x)

─ (λx.x) (λx.x)

─ (λx.(λy.x y)) y
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Operational Semantics

• If the function λx.t is applied to t2, we substitute all free occurrences 

of 𝑥 in t with 𝑡2. 

─ If the substitution would bring a free variable of t2 in an expression 

where this variable occurs bound, we rename the bound variable 

before performing the substitution.

• Examples:

(λx.x) (λx.x) → ?

(λx.(λy.x y)) y → ?

(λx.(λy.(x (λx.x y)))) y → ?
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Operational Semantics

• Beta-reduction:  the only computation (substitution)

─ the term obtained by replacing all free occurrences of x in t12 by t2

─ a term of the form (λx.t) v — a λ-abstraction applied to a value — is

called a redex (short for “reducible expression”)

─ the operation of rewriting a redex according to the above rule is

called beta-reduction

• Examples:

λx. x y → y

(λx. x (λx. x)) (u r) → u r (λx. x)
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Values 
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Evaluation Strategies

• Full beta-reduction

─ any redex may be reduced at any time. 

• e. g.，id = λx.x,  consider 

(λx.x) ((λx.x) (λz. (λx.x) z))

─ we can apply full beta reduction to any of the following underlined 

redexes: 

Note:  lambda calculus is confluent under full beta-reduction. 
Ref. Church-Rosser property.
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Evaluation Strategies

• The normal order strategy

─ The leftmost, outmost redex is always reduced first.

• try to reduce always the leftmost expression of a series of applications, and

continue until no further reductions are possible

─ the evaluation relation under this strategy is actually a partial

function: each term t evaluates in one step to at most one term t’
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Evaluation Strategies

• call-by-name strategy

─ a more restrictive normal order strategy, allowing no reduction

inside abstraction.

─ stop before the last and regard λz. id z as a normal form

─ call-by-need
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Evaluation Strategies

• call-by-value strategy

─ only outermost redexes are reduced and 

─ where a redex is reduced only when its right-hand side has already 

been reduced to a value

• value:  a term that cannot be reduced any more.
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Evaluation Strategies

• call-by-value strategy

─ strict in the sense that the arguments to functions are always evaluated, 

whether or not they are used by the body of the function.

─ reflects standard conventions found in most mainstream languages.

─ adopted in our course

• The choice of evaluation strategy actually makes little difference when 

discussing type systems.

─ The issues that motivate various typing features, and the techniques 
used to address them, are much the same for all the strategies. 
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Operational Semantics

• Computation rule

• Congruence rules
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Lambda Calculus

• Once we have λ-abstraction and application, we can throw away all

the other language primitives and still have left a rich and powerful

programming language.

• Everything is a function:

─ Variables always denote functions

─ Functions always take other functions as parameters

─ The result of a function is always a function
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Abstractions over Functions

• Consider the λ-abstraction

g = λf. f (f (succ 0))

─ the parameter variable f is used in the function position in the body of g.

─ terms like g are called higher-order functions.

─ If we apply g to an argument like plus3, the “substitution rule” yields a

nontrivial computation:
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Programming
in the Lambda Calculus

Multiple Arguments

Church Booleans

Pairs

Church Numerals

Recursion



Multiple Arguments

f (x, y) = t    （i.e., f x y)

currying

(f x) y = t

λ-encoding

f = λx. (λy. t)

• λ-calculus provides only one-argument functions, all multi-argument 

functions must be written in curried style.
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Multiple Arguments

• In general, λx. λy. t is a function that, given a value v for x, yields a

function that, given a value u for 𝑦, yields t with v in place of x and u

in place of y.

─ i.e., λx. λy. t is a two-argument function.

• λ-abstraction that does nothing but immediately yields another

abstraction — is very common in the λ-calculus.
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Church Booleans

• Boolean values can be encoded as:

𝑡𝑟𝑢 = 𝜆𝑡. 𝜆𝑓. 𝑡

𝑓𝑙𝑠 = 𝜆𝑡. 𝜆𝑓. 𝑓
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Church Booleans

• Boolean conditional and operators can be encoded as:

test = λl.  λm.  λn.  l m n 
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Church Booleans

─ a function that, given a boolean value v, returns fls if v is tru and 

tru if v is fls.

• How to define not ? 
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Church Booleans

• Boolean conditional 

─ and is a function that, given two boolean values v and w, returns w

if v is tru and fls if v is fls.

─ thus and v w yields tru if both v and w are tru, and fls if either v or 

w is fls.

• and operators can be encoded as:
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and = λb. λc. b c fls



Church Booleans

• How to define or ?

𝑜𝑟 = 𝜆𝑎. 𝜆𝑏. 𝑎 𝑡𝑟𝑢 𝑏
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Pairs

• Encoding

• Example
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Church Numerals

• Encoding Church numerals

─ Basic idea: represent the number 𝑛 by a function that “repeats

some action 𝑛 times”, making numbers into active entities

─ each number 𝑛 is represented by a term cn taking two arguments,

s and z (for “successor” and “zero”), and applies s, n times, to z.
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Functions on Church Numerals

• Successor

suc = λn. λs. λz. s (n s z);

• addition

plus = λm. λn. λs. λz. m s (n s z);

• Multiplication

times = λm. λn. m (plus n) c0;

• Zero test

iszro = λm. m (λx. fls) tru
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Both suc and plus take some Church numeral (n for suc and m,n for plus) and yield
another Church numeral —i.e., a function- that accepts arguments s and z, applies
s iteratively to z



Church Numerals

• Can you define minus?

─ Suppose we have pred, can you define minus?

• 𝜆𝑚. 𝜆𝑛. 𝑛 𝑝𝑟𝑒𝑑 𝑚

• Can you define pred?

─ 𝜆𝑛. 𝜆𝑠. 𝜆𝑧. 𝑛 𝜆𝑔. 𝜆ℎ. ℎ 𝑔 𝑠 𝜆𝑢. 𝑧 (𝜆𝑢. 𝑢)

─ 𝜆𝑢. 𝑧 -- a wrapped zero

─ (𝜆𝑢. 𝑢) – the last application to be skipped

─ 𝜆𝑔. 𝜆ℎ. ℎ 𝑔 𝑠 -- apply h if it is the last application, otherwise apply g

─ Try n = 0, 1, 2 to see the effect
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Church Numerals

• predecessor

z𝑧 = pair c0 c0

ss  = λp. pair (snd p) (scc (snd p))

prd = λm. fst (m ss zz)
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Church Numerals

• We have seen that booleans, numbers, and the operations on them can be 

encoded in the pure lambda-calculus. 

• When working with examples, however, it is often convenient to include

the primitive booleans and numbers (and possibly other data types) as well.

• It is easy to convert back and forth between the two different

implementations of booleans and numbers.

─ e.g., to turn a Church boolean into a primitive Boolean

realbool = λb. b true false;

─ To go the other direction, we use an if expression:

churchbool = λb. if b then tru else fls
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Normal forms

• Recall

─ A normal form is a term that cannot take an evaluation step. 

─ A stuck term is a normal form that is not a value.

• Are there any stuck terms in the pure 𝜆-calculus?

• Does every term evaluate to a normal form?
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Divergence

• Note that omega evaluates in one step to itself !

─ evaluation of omega never reaches a normal form: it diverges.

• Terms with no normal form are said to diverge. 

• Divergent computation does not seem very useful in itself. However, 

there are variants of omega that are very useful ...
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Recursion 
in the Lambda Calculus



Recursion

• Suppose f is some 𝜆-abstraction, and consider the following term:

Yf = (λx. f (x x )) (λx. f (x x));

Yf =
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Recursion

• Yf is still not very useful, since (like omega), all it does is diverge. 

• Is there any way we could “slow it down”? 
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Recursion: Delaying divergence

delay = λy. omega

• Note that delay is a value — it will only diverge when actually

applying it to an argument, i.e., we can safely pass it as an argument

to other functions, return it as a result from functions, etc.
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(λp. fst (pair p fls) tru) delay 
⟶

fst (pair delay fls) tru
⟶

delay tru
⟶

omega
⟶
……



Recursion:  Delaying divergence

• Here is a variant of omega in which the delay and divergence are a 

bit more tightly intertwined:
omegav =

λy. λx. λy. x x y λx. λy. x x y y

• Note that omegav is a normal form. However, if we apply it to any
argument v, it diverges:
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omegav v=
(λy. (λx. (λy. x x y))  (λx. (λy. x x y)) y)   v

⟶
(λx. (λ y. x x y))   (λx. (λy. x x y))   v

⟶
λy. (λx. (λy. x x y))  (λx. (λ y. x x y)) y)  v

=
omegav  v



Recursion:  another Delayed variant
• Suppose f is a function. Define

Zf =  λy.  (λx. f (λy. x x y))   (λx. f (λy. x x y))  y

by combining the “added f” from Yf with the “delayed divergence” of
omegav.

• apply Zf to an argument v, something interesting happens:
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Zf v=
(λy.  (λx. f (λy. x x y))   (λx. f (λy. x x y))  y)   v

⟶
(λx. f (λy. x x y))   (λx. F (λy. x x y)) v

⟶
f (λy.  (λx. f (λy. x x y))   (λx. f (λy. x x y))  y)   v

=
f  Zf v



Recursion:  another Delayed variant
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Zf v=
(λy.  (λx. f (λy. x x y))   (λx. f (λy. x x y))  y)   v

⟶
(λx. f (λy. x x y))   (λx. F (λy. x x y)) v

⟶
f (λy.  (λx. f (λy. x x y))   (λx. f (λy. x x y))  y)   v

=
f  Zf v

• Since Zf and v are both values, the next computation step will be the 

reduction of f  Zf — that is, f gets to do some computation before we 

“diverge” 



Recursion:  Generic Z
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If we define
Z = λf. Zf

i.e.,
Z =

λf.  λy.  (λx. f (λy. x x y))   (λx. f (λy. x x y))  y 

then we can obtain the behavior of Zf for any f we like, simply by 

applying Z to f.

Z  f ⟶ Zf



Recursion

• Fixed-point combinator

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

fix f = f (λy. (fix f) y)
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Z here is essentially the same as the fix given in the textbook

• Z = λf.  λy.  (λx. f  (λy. x x y))   (λx. f  (λy. x x y))  y



Recursion

• Basic Idea:

A recursive definition: 

h = <body containing h>

g = λf . <body containing f >

h = fix g
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Recursion

• Example:

fac = λn. if eq n c0 

then c1 

else times n (fac (pred n)

g = λf . λn. if eq n c0 

then c1 

else times n (f (pred n)

fac = fix g

Exercise: Check that fac c3 → c6.
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Recursion

• Assuming call-by-value

─ (x x) in Yf is not a value

─ while (λy. x x y) is a value

─ Yf will diverge for any f
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fix = λf. λx. f λy. x x y λx. f λy. x x y

Yf = (λx. f (x x )) (λx. f (x x));



Formalities 
(Formal Definitions)

Syntax (free variables)

Substitution

Operational Semantics



Syntax

• Definition [Terms]: 

Let 𝒱 be a countable set of variable names. 

The set of terms is the smallest set 𝒯 such that 

1. x ∈ 𝒯 for every x ∈ 𝒱; 

2. if t1 ∈ 𝒯 and x ∈ 𝒱, then λx.t1 ∈ 𝒯; 

3. if t1 ∈ 𝒯 and t2 ∈ 𝒯, then t1 t2 ∈ 𝒯. 
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Syntax

• Definition:  Free Variables of term t，written as FV(t): 

FV(x) = {x}

FV(λx.t1) = FV(t1) \ {x}

FV(t1 t2) = FV(t1) ∪ FV(t2) 

Design Principles of Programming Language, Spring 2024 74

• Please prove that |FV(t)|  size(t) for every term t



Substitution

Example:
[x ↦ y z] (𝜆y. x y)

=  [x ↦ y z] (λw. x w)
=  λw. y z w

Alpha-conversion : Terms that differ only in the names of bound
variables are interchangeable in all contexts.

Design Principles of Programming Language, Spring 2024 75



Operational Semantics
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Summary

• What is lambda calculus for?

─ A core calculus for capturing language essential mechanisms

─ Simple but powerful

• Syntax

─ Function definition + function application

─ Binder, scope, free variables

• Operational semantics

─ Substitution

─ Evaluation strategies: normal order, call-by-name, call-by-value
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Homework

• Read through and understand Chapter 5.

• Do exercise 5.3.6 & 5.3.7 in Chapter 5.
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