
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2024

2c4r

Recap: untyped lambda-calculus

Design Principles of Programming Language, Spring 2024 2

• Terminology:

─ terms in the pure λ-calculus are often called λ-terms

─ terms of the form λx. t are called λ-abstractions or just abstractions

Syntactic conventions

• The λ -calculus provides only one-argument functions, all multi-

argument functions must be written in curried style.

• The following conventions make the linear forms of terms easier to

read and write:

─ Application associates to the left

e.g., t u v means (t u) v, not t (u v)

─ Bodies of λ- abstractions extend as far to the right as possible

e.g., λx. λy.x y means λx. (λy. x y), not λx. (λy. x) y

Design Principles of Programming Language, Spring 2024 3

Scope

• An occurrence of the variable 𝑥 is said to be bound when it occurs in

the body t of an abstraction λx.t, i.e.,

─ the λ-abstraction term λ𝑥.t binds the variable 𝑥 , and the scope of

this binding is the body t.

─ λ𝑥 is a binder whose scope is t.

─ a binder can be renamed as necessary

• so-called: alpha-renaming

• e.g., λ𝑥.x = λy. y

Design Principles of Programming Language, Spring 2024 4

Operational Semantics

• Beta-reduction: the only computation (substitution)

─ the term obtained by replacing all free occurrences of x in t12 by t2

─ a term of the form (λx.t) v — a λ-abstraction applied to a value — is

called a redex (short for “reducible expression”)

─ the operation of rewriting a redex according to the above rule is

called beta-reduction

• Examples:

λx. x y → y

(λx. x (λx. x)) (u r) → u r (λx. x)
Design Principles of Programming Language, Spring 2024 5

Evaluation Strategies

• Full beta-reduction

─ any redex may be reduced at any time.

─ confluent under full beta-reduction

• normal order strategy

─ The leftmost, outmost redex is always reduced first.

• call-by-name strategy

─ a more restrictive normal order strategy, allowing no reduction inside abstraction.

• call-by-value strategy

─ only outermost redexes are reduced and

─ where a redex is reduced only when its right-hand side has already been reduced to a value

─ strict in the sense that the arguments to functions are always evaluated, whether or not they
are used by the body of the function.

─ reflects standard conventions found in most mainstream languages.

─ adopted in our course

Design Principles of Programming Language, Spring 2024 6

Operational Semantics

• Computation rule

• Congruence rules

Design Principles of Programming Language, Spring 2024 7

Programming

in the Lambda Calculus

Multiple Arguments

Church Booleans

Pairs

Church Numerals

Recursion

Church Booleans

• Boolean values can be encoded as:

tru = λt. λf. t

fls = λt. λf. f

• Boolean conditional and operators can be encoded as:

test = λl. λm. λn. l m n

Design Principles of Programming Language, Spring 2024 9

and = λb. λc. b c fls

𝑜𝑟 = 𝜆𝑎. 𝜆𝑏. 𝑎 𝑡𝑟𝑢 𝑏

Church Numerals

• Encoding Church numerals

─ Basic idea: represent the number 𝑛 by a function that “repeats

some action 𝑛 times”, making numbers into active entities

─ each number 𝑛 is represented by a term cn taking two arguments,

s and z (for “successor” and “zero”), and applies s, n times, to z.

Design Principles of Programming Language, Spring 2024 10

Multiple Arguments

• In general, λx. λy. t is a function that, given a value v for x, yields a

function that, given a value u for 𝑦, yields t with v in place of x and u

in place of y.

─ i.e., λx. λy. t is a two-argument function.

• λ-abstraction that does nothing but immediately yields another

abstraction — is very common in the λ-calculus.

Design Principles of Programming Language, Spring 2024 11

Recursion

in the Lambda Calculus

Recursion

• Basic Idea:

A recursive definition:

h = <body containing h>

Design Principles of Programming Language, Spring 2024 13

First try: Self-application function: Divergence

• Note that omega evaluates in one step to itself !

─ evaluation of omega never reaches a normal form: it diverges.

• Terms with no normal form are said to diverge.

• Divergent computation does not seem very useful in itself. However,

there are variants of omega that are very useful ...

Design Principles of Programming Language, Spring 2024 14

Omega = （λx. x x）(λx. x x)

Recursion

• Suppose f is some 𝜆-abstraction, and consider the following term:

Yf = (λx. f (x x)) (λx. f (x x));

Design Principles of Programming Language, Spring 2024 15

Yf =

Recursion

• Yf is still not very useful, since (like omega), all it does is diverge.

• Is there any way we could “slow it down”?

Design Principles of Programming Language, Spring 2024 16

Recursion: Delaying divergence

delay = λy. omega

• Note that delay is a value — it will only diverge when actually

applying it to an argument, i.e., we can safely pass it as an argument

to other functions, return it as a result from functions, etc.

Design Principles of Programming Language, Spring 2024 17

(λp. fst (pair p fls) tru) delay
⟶

fst (pair delay fls) tru
⟶

delay tru
⟶

omega
⟶
……

Recursion: Delaying divergence

• Here is a variant of omega in which the delay and divergence are a

bit more tightly intertwined:

omegav = λy. λx. λy. x x y λx. λy. x x y y

• Note that omegav is a normal form. However, if we apply it to any
argument v, it diverges:

Design Principles of Programming Language, Spring 2024 18

omegav v=
(λy. (λx. (λy. x x y)) (λx. (λy. x x y)) y) v

⟶
(λx. (λ y. x x y)) (λx. (λy. x x y)) v

⟶
λy. (λx. (λy. x x y)) (λx. (λ y. x x y)) y) v

=
omegav v

Recursion: another Delayed variant

• Suppose f is a function. Define

Zf = λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

by combining the “added f” from Yf with the “delayed divergence” of
omegav.

• Apply Zf to an argument v, something interesting happens:

Design Principles of Programming Language, Spring 2024 19

Zf v=
(λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

⟶
(λx. f (λy. x x y)) (λx. F (λy. x x y)) v

⟶
f (λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

=
f Zf v

Recursion: another Delayed variant

• Since Zf and v are both values, the next computation step will be the

reduction of f Zf — that is, f gets to do some computation before it

“diverges”

Design Principles of Programming Language, Spring 2024 20

Zf v=
(λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

⟶
(λx. f (λy. x x y)) (λx. F (λy. x x y)) v

⟶
f (λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y) v

=
f Zf v

Recursion: Generic Z

then we can obtain the behavior of Zf for any f we like, simply by

applying Z to f.

Z f ⟶ Zf

Design Principles of Programming Language, Spring 2024 21

If we define
Z = λf. Zf

i.e.,
Z =

λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

Recursion

• Fixed-point combinator

fix = λf. (λx. f (λy. x x y)) (λx. f (λy. x x y));

Design Principles of Programming Language, Spring 2024 22

fix f = f (λy. (fix f) y)

Z here is essentially the same as the fix given in the textbook

• Z = λf. λy. (λx. f (λy. x x y)) (λx. f (λy. x x y)) y

Recursion

• Basic Idea:

A recursive definition:

h = <body containing h>

g = λf . <body containing f >

h = fix g

Design Principles of Programming Language, Spring 2024 23

Recursion

• Example:

fac = λn. if eq n c0

then c1

else times n (fac (pred n)

g = λf . λn. if eq n c0
then c1
else times n (f (pred n)

fac = fix g

Design Principles of Programming Language, Spring 2024 24

Exercise: Check that fac c3 → c6.

Recursion

• Assuming call-by-value

─ (x x) in Yf is not a value

─ while (λy. x x y) is a value

─ Yf will diverge for any f

Design Principles of Programming Language, Spring 2024 25

fix = λf. λx. f λy. x x y λx. f λy. x x y

Yf = (λx. f (x x)) (λx. f (x x));

Formalities
(Formal Definitions)

Syntax (free variables)

Substitution

Operational Semantics

Syntax

• Definition [Terms]:

Let 𝒱 be a countable set of variable names.

The set of terms is the smallest set 𝒯 such that

1. x ∈ 𝒯 for every x ∈ 𝒱;

2. if t1 ∈ 𝒯 and x ∈ 𝒱, then λx.t1 ∈ 𝒯;

3. if t1 ∈ 𝒯 and t2 ∈ 𝒯, then t1 t2 ∈ 𝒯.

Design Principles of Programming Language, Spring 2024 27

Syntax

• Definition: Free Variables of term t，written as FV(t):

FV(x) = {x}

FV(λx.t1) = FV(t1) \ {x}

FV(t1 t2) = FV(t1) ∪ FV(t2)

Design Principles of Programming Language, Spring 2024 28

• Please prove that |FV(t)| size(t) for every term t

Operational Semantics

Design Principles of Programming Language, Spring 2024 29

Substitution

Design Principles of Programming Language, Spring 2024 30

Example:
[x ↦ y z] (𝜆y. x y)

= [x ↦ y z] (λw. x w)
= λw. y z w

Alpha-conversion : Terms that differ only in the names of bound
variables are interchangeable in all contexts.

Chapter 6
Nameless Representation of

Terms

Terms and Contexts

Shifting and Substitution

Bound Variables

• Recall that bound variables can be renamed, at any moment, to enable

substitution:

• Variable Representation

─ Represent variables symbolically, with variable renaming mechanism

─ Represent variables symbolically, with bound variables are all different

─ “Canonically” represent variables in a way such that renaming is unnecessary

─ No use of variables: combinatory logic

Design Principles of Programming Language, Spring 2024 32

Terms and Contexts

Nameless Terms

• De Bruijin idea: Replacing named variables by natural numbers,

where the number 𝑘 stands for “the variable bound by the 𝑘′𝑡ℎ

enclosing λ”. e.g.,

─ λx.x λ.0

─ λx.λy. x (y x) λ.λ. 1 (0 1)

De Bruijin terms vs De Bruijin indices

• e.g., the corresponding nameless term for the following:

c0 = λs. λz. z;

c2 = λs. λz. s (s z);

plus = λm. λn. λs. λz. m s (n z s);

fix = λf. (λx. f (λy. (x x) y)) (λx. f (λy. (x x) y));

foo = (λx. (λx. x)) (λx. x);

Nameless Terms

• Need to keep careful track of how many free variables each term may contain.

Definition [Terms]: Let 𝒯 be the smallest family of sets {𝒯0, 𝒯1 , 𝒯2, . . .} such that

1. k ∈ 𝒯n whenever 0 ≤ k < n;

2. if t1 ∈ 𝒯n and n>0, then λ.t1 ∈ 𝒯n−1;

3. if t1 ∈ 𝒯n and t2 ∈ 𝒯n, then (t1 t2) ∈ 𝒯n.

• Note:

─ terms with no free variables are called the 0-terms; 1-terms (one free variables), …

─ 𝒯n are set of terms with at most n free variables, n-terms, numbered between 0 and

n-1: a given element of 𝒯n need not have free variables with all these numbers, or

indeed any free variables at all. When t is closed, for example, it will be an element of

𝒯n for every n.

─ two ordinary terms are equivalent modulo renaming of bound variables iff they have

the same de Bruijn representation.

Name Context

• To deal with terms containing free variables, to represent

λx. y x

x as a nameless term.

We know what to do with x, but we cannot see the binder for y, so it is

not clear how “far away” it might be and we do not know what number

to assign to it.

Name Context

Definition: Suppose x0 through xn are variable names from 𝜈. The naming context

Γ = xn, xn−1, . . . x1, x0 assigns to each xi the de Bruijn index i.

Note that the rightmost variable in the sequence is given the index 0; this

matches the way we count λ binders — from right to left — when converting a

named term to nameless form.

We write dom(𝜞) for the set {xn, . . . x1, x0 } of variable names mentioned in Γ .

• e.g., Γ = x ↦ 4; y ↦ 3; z ↦ 2; a ↦ 1; b ↦ 0 , under this Γ, we have

─ x (y z) ? 4 (3 2)

─ λw. y w λ. 4 0

─ λw. λa. x λ. λ. 6

Shifting and Substitution

How to define substitution [k ↦ s] t?

Shifting

• Under the naming context Γ : x ↦ 1, z ↦ 2

[1 ↦ 2 (λ. 0)] λ. 2 ⟶ ?

i.e., [x ↦ z (λw. w)] λy. x ⟶ ?

• When a substitution goes under a λ-abstraction, as in [1 ↦ s](λ.2) (i.e.,[x ↦ s]

(λy.x), assuming that 1 is the index of x in the outer context), the context in which

the substitution is taking place becomes one variable longer than the original;

• We need to increment the indices of the free variables in s so that they keep

referring to the same names in the new context as they did before.

• e.g., s = 2 (λ. 0), , i.e., s = z (λw.w), assuming 2 is the index of z in the outer

context, we need to shift the 2 but not the 0

• An auxiliary operation: renumber the indices of the free variables in a term.

Shifting

Substitution

• Example

[1 ↦ 2 (λ. 0)] λ. 2 ⟶ λ. 3 (λ. 0)

i.e., [x ↦ z (λw. w)] λy. x ⟶ λy. z (λw. w)

Evaluation

• To define the evaluation relation on nameless terms, the only thing

we need to change (i.e., the only place where variable names are

mentioned) is the beta-reduction rule (computation rules), while keep

the other rules identical to what as Figure 5-3.

• How to change the above rule for nameless representation?

Evaluation

• Example:

Homework

• Read Chapter 6.

─ Do Exercise 6.2.5.

• Read Chapter 7 and download & digest the fulluntyped

implementation includes extensions such as numbers and booleans.

Evaluation

• Example:

