WSS RIE
Design Principles of
Programming Languages

Halyan Zhao, Di Wang
X,

= |

Peking University, Spring Term 2024

Chapter 8:
Typed Arithmetic Expressions

Types
The Typing Relation
Safety = Progress + Preservation

Review: Arithmetic Expression - Syntax

t = terms
true constant true
false constant false
if t then t else t conditional
0 constant zero
succ t successor
pred t predecessor
iszero t zero test

v o= values
true true value
false false value
nv numeric value

nv = numeric values
0 zero value
succ nv successor value

Design Principles of Programming Languages, Spring 2024 3

Review: Arithmetic Expression - Evaluation Rules

if true then t, else t3 — to (E-IFTRUE)

if false then t, else t3 — tj (E-IFFALSE)
t; — t]

(E-IF)

if t; then t, else t3 — if ti then t, else tj3

Design Principles of Programming Languages, Spring 2024 4

Review: Arithmetic Expression - Evaluation Rules

t; — t!
: , (E-Succ)
succ t; — succ T,
pred 0 — O (E-PREDZERO)
pred (succ nvi;) — nv (E-PREDSUCC)
ty — t]
, (E-PRED)
pred t; — pred tj
iszero 0 — true (E-ISZEROZERO)

iszero (succ nv;) — false (E-ISZEROSUCC)

tl—i*tfl

(E-ISZERO)

. . /
1szero t; — 1szero T,

Design Principles of Programming Languages, Spring 2024 5

Evaluation Results

 Either values

- |

v = values |
|

: true true value |
I false false value :
! nv numeric value I
: l
| LV = numeric values :
| 0 zero value |
|

: succ nv successor value :
L e e e e e e e e e e e e e e e e e e o o o ————— a

 Or stuckness

Design Principles of Programming Languages, Spring 2024 6

Types of Terms

« Can we tell, without actually evaluating a term, that the term evaluation will
not get stuck?

 |f we can distinguish two types of terms:
— Nat: terms whose results will be a numeric value

— Bool: terms whose results will be a Boolean value

« “atermt has type T” means that

t “obviously” (statically) evaluates to a value of T
— If true then false else true has type Bool
— pred (succ (pred (succ 0))) has type Nat

Design Principles of Programming Languages, Spring 2024 7

The Typing Relation
t: T

Types

* Values have two possible “shapes”
either booleans or numbers.

T = types
Bool type of booleans
Nat type of numbers

 metavariables S, T, U, etc. will be used to range over types

Design Principles of Programming Languages, Spring 2024 9

Typing Rules

true : Bool (T-TRUE)
false : Bool (T-FALSE)

t1 : Bool to Z@ ta @ (T—IF)

1f t1 then to else t3:

0 : Nat (T-ZERO)
t1 : Nat
: (T-Succ)
succ t; : Nat
t1 : Nat
: (T-PRED)
pred t; : Nat
t1 : Nat
: (T-ISZERO)

Design Principles of Programming Languages, Spring 2024

10

Typing Relation: Formal Definition

« Definition:
the typing relation for arithmetic expressions is the smallest binary
relation between terms and types satisfying all instances of the
typing rules.

« Atermt Is typable (or well typed) if there is some T such thatt: T.

Design Principles of Programming Languages, Spring 2024 11

Typing Derivation

« Every pair (t, T) in the typing relation can be justified by a derivation
tree built from instances of the inference rules.

T-ZERO T-ZERO
O : Nat O : Nat
T-1SZERO T-ZERO T-PRED
iszero O ! Bool O : Nat pred O ! Nat
T-1r

if iszero O then O else pred O ! Nat

* Proofs of properties about the typing relation often proceed by
iInduction on typing derivations.

- Statements are formal assertions about the typing of programs.
« Typing rules are implications between statements.
* Derivations are deductions based on typing rules.

Design Principles of Programming Languages, Spring 2024 12

Imprecision of Typing

 Like other static program analyses, type systems are generally
Imprecise: they do not predict exactly what kind of value will be
returned by every program, but just a conservative (safe)

approximation.

t1 : Bool to 1 T ty . T
1f t; then to else t3 : T

(T-Tr)

« Using this rule, we cannot assign a type to

1f true then 0 else false

even though this term will certainly evaluate to a number

Design Principles of Programming Languages, Spring 2024 13

Properties of
The Typing Relation

Inversion Lemma (Generation Lemma)

* Given a valid typing statement, it shows
— how a proof of this statement could have been generated,

— a recursive algorithm for calculating the types of terms.
. 1. If true : R, then R = Bool.

2. If false : R, then R — Bool.
3. If if t1 then t» else t3 : R, then t1 : Bool, t> : R, and

A |1f 0 : R, then R = Nat.

5. If succ t{ : R, then R = Nat and t; : Nat.

6. If pred t; : R, then R = Nat and t; : Nat.

7. If iszero t1 : R, then R = Bool and t; : Nat.

Design Principles of Programming Languages, Spring 2024 15

Typechecking Algorithm

typeof (t) = if t = true then Bool
else if t = false then Bool
else if t = if t1 then t2 else t3 then
let T1 = typeof(tl) in
let T2 = typeof(t2) in
let T3 = typeof(t3) in
if Tl = Bool and T2=T3 then T2
else "not typable"
else if t = 0 then Nat
else if t = succ tl then
let T1 = typeof(tl) in
if Tl = Nat then Nat else '"not typable"
else if t = pred tl then
let T1 = typeof(tl) in
if Tl = Nat then Nat else '"not typable"
else 1f t = iszero tl then
let T1 = typeof(tl) in

if Tl = Nat then Bool else '"not typable"
Design Principles of Programming Languages, Spring 2024 16

generation lemma

Canonical Forms

* Lemma:
1. If v is a value of type Bool, then v is either true or false.

2. If vis a value of type Nat, then v is a numeric value.

e Proof Vo= values
true true value
false false value
nv numeric value
nv = numeric values
0 zero value
Succ nv successor value

For part 1, if v Is true or false, the result is immediate. But v cannot be O or succ nv,
since the inversion lemma tells us that v would then have type Nat, not Bool.

Part 2 Is similar.

Design Principles of Programming Languages, Spring 2024 17

Uniqueness of Types

 Theorem [Unigueness of Types].
Each term t has at most one type. I.e.,
If t 1S typable, then its type Is unique.

* Note: we may have a type system where a term may have many
types, later.

Design Principles of Programming Languages, Spring 2024

18

Safety

Progress + Preservation

Safety (Soundness)

« By safety, it means well-typed terms do not “go wrong’.

* “go wrong” means reaching a “stuck state” that is not a final value
but where the evaluation rules do not tell what to do next.

Design Principles of Programming Languages, Spring 2024 20

Safety = Progress + Preservation

Well-typed terms do not get stuck

e Progress: A well-typed term is not stuck (either it is a value or it can take a
step according to the evaluation rules).

e Preservation: If a well-typed term takes a step of evaluation, then the
resulting term is also well typed.

Design Principles of Programming Languages, Spring 2024 21

Progress

Theorem [Progress]: Suppose t is a well-typed term (that is, t : T for some
T), then either t is a value or else there is some t' witht — t".

Proof: By induction on a derivation of t : T.
— case T-True: true: Bool OK?
— case T-False, T-Zero are immediate, since t in these cases is a value.
— case T-If: t=1ift; thent, else t;
t,:Bool, t,: T, t;:T

By the induction hypothesis, either t, is a value or there is some t," such that t,
— ;"

If t, IS a value, then the canonical forms lemma tells us that it must be either true
or false, in which case either E-IFTrue or E-IFFalse applies to t.

On the other hand, if t; — t;, then, by E-IF, t; — if t;"then t, else t;.

Design Principles of Programming Languages, Spring 2024 22

Progress

Theorem [Progress]. Suppose t is a well-typed term (that is, t : T for
some T), then either tis a value or else there is some t' witht — t".

Proof: By induction on a derivation of t: T.
— The cases for rules T-Zero, T-Succ, T-Pred, and T-IsZero are similar.

Design Principles of Programming Languages, Spring 2024 23

Preservation

Theorem [Preservation]:
Ift: Tandt — 1t thent':T.

Proof: By induction on a derivation of t : T. Each step of the induction

assumes that the desired property holds for all sub-derivations and proceed
by case analysis on the final rule in the derivation.

— case T-IF: t=ift thent,elset; t,:Bool, t,:T, t3:T
There are three evaluation rules by which and t — t' can be derived:
E-IFTrue, E-IFFalse, and E-IF. Consider each case separately.

— Subcase E-IFTrue: t,=true t'=1,

Immediate, by the assumption t,: T.

E-IFFalse subcase: similar.

Design Principles of Programming Languages, Spring 2024 24

Preservation

Theorem [Preservation]:
Ift: Tandt —t', thent : T.

Proof: By induction on a derivation of t : T. Each step of the induction assumes
that the desired property holds for all sub-derivations and proceed by case analysis
on the final rule in the derivation.

— case T-IF: t=ift thent,elset; t,:Bool, t,:T, t3:T
There are three evaluation rules by which and t — t' can be derived: E-IFTrue, E-
IFFalse, and E-IF. Consider each case separately.

- Subcase E-IF: t;, —t,,, t'=1ft,"thent, else t,

Applying the IH to the subderivation of t, : Bool yields t," : Bool. ombining this with the
assumptions that , t,: T, and t;: T, we can apply rule T-IF to conclude that if if t," then
t,elsety,: T, thatis, t': T

Design Principles of Programming Languages, Spring 2024 25

Preservation

Theorem [Preservation]:

Ift: Tandt—t', thent':T.

The preservation theorem is often called subject reduction property (or subject
evaluation property)

Design Principles of Programming Languages, Spring 2024 26

Recap: Type Systems

* Very successful example of a lightweight formal method
 big topic in PL research

« enabling technology for all sorts of other things, e.g., language-based
security

 the skeleton around which modern programming languages are
designed

Design Principles of Programming Languages, Spring 2024 27

Homework

 Read and digest Chapter 8.
* Do Exercises 8.3.7

Design Principles of Programming Languages, Spring 2024 28

