
编程语言的设计原理
Design Principles of  

Programming Languages

Haiyan Zhao,  Di Wang

赵海燕，王迪

Peking University, Spring Term 2024



The Typing Relation 
t : T

Recap



Types 

• Values have two possible “shapes”: 

─ either booleans

─ or numbers.

Design Principles of Programming Language, Spring 2024 3



Typing Rules

Design Principles of Programming Language, Spring 2024 4



Typing Relation: Formal Definition

• Definition:     

the typing relation for arithmetic expressions is the smallest binary 

relation between terms and types satisfying all instances of the 

typing rules.

• A term t is typable (or well typed) if there is some T such that t : T. 

Design Principles of Programming Language, Spring 2024 5



Chapter 9: 
Simply Typed Lambda-Calculus

Function Types

The Typing Relation

Properties of Typing

The Curry-Howard Correspondence

Erasure and Typability



The simply typed lambda-calculus

• The system we are about to define is commonly called the simply 

typed lambda-calculus,  λ→，for short.

• Unlike the untyped lambda-calculus, the “pure” form of λ→ (with no 

primitive values or operations) is not very interesting; to talk about λ→, 

we always begin with some set of “base types.”

─ Strictly speaking, there are many variants of λ→ , depending on 

the choice of base types.

─ For now, we’ll work with a variant constructed over the booleans.

Design Principles of Programming Language, Spring 2024 7



Untyped lambda-calculus with booleans

Design Principles of Programming Language, Spring 2024 8



Function Types 

• 𝑇1 ⟶ 𝑇2

─ classifying functions that expect arguments of type T1 and return results of 
type T2. 

• the type constructor ⟶ is  right-associative, e.g., 

𝑇1 ⟶𝑇2 ⟶ 𝑇3 stands for 𝑇1 ⟶ (𝑇2 ⟶ 𝑇3)

• Let’s consider Booleans with lambda calculus

T ::=   types :

Bool type of booleans

T ⟶ T type of functions

• Examples

─ Bool ⟶ Bool

─ (Bool ⟶ Bool) ⟶ (Bool ⟶ Bool) 

Design Principles of Programming Language, Spring 2024 9



Typing rules

???

λx: T1. t2 ∶ T1⟶T2
(T−ABS）

Design Principles of Programming Language, Spring 2024 10



𝛌→

Assume:  all variables in Γ are different 
via renaming/internal  

Design Principles of Programming Language, Spring 2024 11



𝛌→

• What is the relation between these two statements?

t : T
⊢ t : T

these two relations are completely different things.

• We are dealing with several different small programming languages,

each with its own typing relation (between terms in that language and

types in that language)

─ for the simple language of numbers and booleans, typing is a

binary relation between terms and types (t : T).

─ for 𝛌→, typing is a ternary relation between contexts, terms, and

types (Γ ⊢ t : T, ⊢ t : T if Γ = ∅)

Design Principles of Programming Language, Spring 2024 12



Type Derivation Tree

Design Principles of Programming Language, Spring 2024 13

What derivations justify the following typing statement?

⊢ (λx: Bool. x) true : Bool



Properties of  Typing

Inversion Lemma

Uniqueness of Types

Canonical Forms

Safety: Progress + Preservation



Inversion Lemma

Exercise:    Is there any context  Γ and type T such that   Γ  ⊢ x x: T?

Design Principles of Programming Language, Spring 2024 15



Canonical Forms

• Lemma:

Design Principles of Programming Language, Spring 2024 16



Uniqueness of Types

• Theorem [Uniqueness of Types]: 

In a given typing context Γ, a term t (with free variables all in the

domain of Γ ) has at most one type.

Moreover, there is just one derivation of this typing built from the

inference rules that generate the typing relation.

Design Principles of Programming Language, Spring 2024 17



Progress

• Theorem [Progress]: 

Suppose t is a closed, well-typed term. Then either t is a value or else 

there is some t′ with t → t′. 

• Closed: No free variable

• Well-typed:    ⊢ t : T for some T

Design Principles of Programming Language, Spring 2024 18

• Proof:   same steps as before... 

− inversion lemma for typing relation 

− canonical forms lemma

− progress theorem



Progress

• Theorem [Progress]: 

Suppose t is a closed, well-typed term. Then either t is a value or else there is 

some t′ with t → t′. 

Proof:  By induction on typing derivations. 

─ The cases for Boolean constants and conditions are the same as before. 

─ The variable case is trivial (cannot occur because t is closed). 

─ The abstraction case is immediate, since abstractions are values.

─ The case for application, where t = t1 t2 with  ⊢ t1 : T11 → T12 and ⊢ t2 : T11.   By the induction 

hypothesis, either t1 is a value or else it can make a step of evaluation, and likewise t2.  

If t1 can take a step, then rule E-App1 applies to t. 

If t1 is a value and t2 can take a step, then rule E-App2 applies. 

Finally, if both t1 and t2 are values, then the canonical forms lemma tells us that t1 has the form 

λx: T11. t12, and so rule E-AppAbs applies to t.

Design Principles of Programming Language, Spring 2024 19



Preservation

• Theorem [Preservation]: 

If Γ ⊢ t: T and t ⟶ t′, then Γ ⊢ t′ :T. 

Proof:  By induction on typing derivations. 

• Substitution Lemma [Preservation of types under substitution]: 

if  Γ, x: S ⊢ t: T  and Γ ⊢ s: S,  then  Γ ⊢ [x↦ s] t: T. 

Proof:  By induction on derivation of   Γ, x: S ⊢ t : T

cases on the possible shape of t.

Design Principles of Programming Language, Spring 2024 20



Preservation

• Theorem [Preservation]: 

If Γ ⊢ t: T and t ⟶ t′, then Γ ⊢ t′ :T. 

Proof:  By induction on typing derivations. 

• Substitution Lemma [Preservation of types under substitution]: 

if  Γ, x: S ⊢ t: T  and Γ ⊢ s: S,  then  Γ ⊢ [x↦ s] t: T. 

Proof:  By induction on derivation of   Γ, x: S ⊢ t : T

cases on the possible shape of t.

Design Principles of Programming Language, Spring 2024 21



Preservation

• Theorem [Preservation]: 

If Γ ⊢ t: T and t ⟶ t′, then Γ ⊢ t′ :T. 

Proof:  By induction on typing derivations. 

• Substitution Lemma [Preservation of types under substitution]: 

if  Γ, x: S ⊢ t: T  and Γ ⊢ s: S,  then  Γ ⊢ [x↦ s] t: T. 

Proof:  By induction on derivation of   Γ, x: S ⊢ t : T

cases on the possible shape of t.

Design Principles of Programming Language, Spring 2024 22



The Curry-Howard Correspondence 

• A connection between logic and type theory

Design Principles of Programming Language, Spring 2024 23



Erasure and Typability

• Types are used during type checking, but do not need to appear in

the compiled form of the program.

• Terms in 𝛌→ can be transformed to terms of the untyped lambda-

calculus simply by erasing type annotations on lambda-abstractions.

Design Principles of Programming Language, Spring 2024 24



Erasure and Typability

• Conversely, an untyped λ-term m is said to be typable if there is some 

term t in the simply typed λ -calculus, some type T, and some context  

Γ such that 

erase(t) = m  and  Γ ⊢ t: T 

This process is called type reconstruction or type inference.

untyped
Design Principles of Programming Language, Spring 2024 25



Curry-Style vs. Church-Style 

• Curry Style

─ Syntax → Semantics → Typing

─ Semantics is defined on untyped terms

─ Often used for implicit typed languages

• Church Style

─ Syntax → Typing → Semantics

─ Semantics is defined only on well-typed terms

─ Often used for explicit typed languages

Design Principles of Programming Language, Spring 2024 26



Homework

• Read through Chapter 9.

• Do Exercise 9.3.9.

Design Principles of Programming Language, Spring 2024 27


