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The Typing Relation 
t : T

Recap



Types 

• Values have two possible “shapes”: 

─ either booleans

─ or numbers.
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Typing Rules
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Typing Relation: Formal Definition

• Definition:     

the typing relation for arithmetic expressions is the smallest binary 

relation between terms and types satisfying all instances of the 

typing rules.

• A term t is typable (or well typed) if there is some T such that t : T. 
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The simply typed lambda-calculus

• The system we are about to define is commonly called the simply 

typed lambda-calculus,  λ→，for short.

• Unlike the untyped lambda-calculus, the “pure” form of λ→ (with no 

primitive values or operations) is not very interesting; to talk about λ→, 

we always begin with some set of “base types.”

─ Strictly speaking, there are many variants of λ→ , depending on 

the choice of base types.

─ For now, we’ll work with a variant constructed over the booleans.
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Untyped lambda-calculus with booleans

Design Principles of Programming Language, Spring 2024 8



Function Types 

• 𝑇1 ⟶ 𝑇2

─ classifying functions that expect arguments of type T1 and return results of 
type T2. 

• the type constructor ⟶ is  right-associative, e.g., 

𝑇1 ⟶𝑇2 ⟶ 𝑇3 stands for 𝑇1 ⟶ (𝑇2 ⟶ 𝑇3)

• Let’s consider Booleans with lambda calculus

T ::=   types :

Bool type of booleans

T ⟶ T type of functions

• Examples

─ Bool ⟶ Bool

─ (Bool ⟶ Bool) ⟶ (Bool ⟶ Bool) 
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Typing rules

???

λx: T1. t2 ∶ T1⟶T2
(T−ABS）
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𝛌→

Assume:  all variables in Γ are different 
via renaming/internal  
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𝛌→

• What is the relation between these two statements?

t : T
⊢ t : T

these two relations are completely different things.

• We are dealing with several different small programming languages,

each with its own typing relation (between terms in that language and

types in that language)

─ for the simple language of numbers and booleans, typing is a

binary relation between terms and types (t : T).

─ for 𝛌→, typing is a ternary relation between contexts, terms, and

types (Γ ⊢ t : T, ⊢ t : T if Γ = ∅)
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Type Derivation Tree
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What derivations justify the following typing statement?

⊢ (λx: Bool. x) true : Bool



Properties of  Typing

Inversion Lemma

Uniqueness of Types

Canonical Forms

Safety: Progress + Preservation



Inversion Lemma

Exercise:    Is there any context  Γ and type T such that   Γ  ⊢ x x: T?
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Canonical Forms

• Lemma:
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Uniqueness of Types

• Theorem [Uniqueness of Types]: 

In a given typing context Γ, a term t (with free variables all in the

domain of Γ ) has at most one type.

Moreover, there is just one derivation of this typing built from the

inference rules that generate the typing relation.
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Progress

• Theorem [Progress]: 

Suppose t is a closed, well-typed term. Then either t is a value or else 

there is some t′ with t → t′. 

• Closed: No free variable

• Well-typed:    ⊢ t : T for some T
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• Proof:   same steps as before... 

− inversion lemma for typing relation 

− canonical forms lemma

− progress theorem



Progress

• Theorem [Progress]: 

Suppose t is a closed, well-typed term. Then either t is a value or else there is 

some t′ with t → t′. 

Proof:  By induction on typing derivations. 

─ The cases for Boolean constants and conditions are the same as before. 

─ The variable case is trivial (cannot occur because t is closed). 

─ The abstraction case is immediate, since abstractions are values.

─ The case for application, where t = t1 t2 with  ⊢ t1 : T11 → T12 and ⊢ t2 : T11.   By the induction 

hypothesis, either t1 is a value or else it can make a step of evaluation, and likewise t2.  

If t1 can take a step, then rule E-App1 applies to t. 

If t1 is a value and t2 can take a step, then rule E-App2 applies. 

Finally, if both t1 and t2 are values, then the canonical forms lemma tells us that t1 has the form 

λx: T11. t12, and so rule E-AppAbs applies to t.
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Preservation

• Theorem [Preservation]: 

If Γ ⊢ t: T and t ⟶ t′, then Γ ⊢ t′ :T. 

Proof:  By induction on typing derivations. 

• Substitution Lemma [Preservation of types under substitution]: 

if  Γ, x: S ⊢ t: T  and Γ ⊢ s: S,  then  Γ ⊢ [x↦ s] t: T. 

Proof:  By induction on derivation of   Γ, x: S ⊢ t : T

cases on the possible shape of t.
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The Curry-Howard Correspondence 

• A connection between logic and type theory
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Erasure and Typability

• Types are used during type checking, but do not need to appear in

the compiled form of the program.

• Terms in 𝛌→ can be transformed to terms of the untyped lambda-

calculus simply by erasing type annotations on lambda-abstractions.
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Erasure and Typability

• Conversely, an untyped λ-term m is said to be typable if there is some 

term t in the simply typed λ -calculus, some type T, and some context  

Γ such that 

erase(t) = m  and  Γ ⊢ t: T 

This process is called type reconstruction or type inference.

untyped
Design Principles of Programming Language, Spring 2024 25



Curry-Style vs. Church-Style 

• Curry Style

─ Syntax → Semantics → Typing

─ Semantics is defined on untyped terms

─ Often used for implicit typed languages

• Church Style

─ Syntax → Typing → Semantics

─ Semantics is defined only on well-typed terms

─ Often used for explicit typed languages
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Homework

• Read through Chapter 9.

• Do Exercise 9.3.9.

Design Principles of Programming Language, Spring 2024 27


