wiEESHITIRIE
Design Principles of
Programming Languages

Halyan Zhao, Di Wang
X, T

Peking University, Spring Term 2024

Recap

The Typing Relation
t: T

Types

* Values have two possible “shapes’
— either booleans
— or numbers.

T 1= types
Bool type of booleans
Nat type of numbers

Design Principles of Programming Language, Spring 2024 3

Typing Rules

true : Bool (T-TRUE)
false : Bool (T-FALSE)
t1 : Bool tr ¢ T t3 ¢ T
1 2 3 (T-Tr)
1f t; then to else t3 : T
0 : Nat (T-ZERO)
t1 : Nat
1 (T-Succ)
succ t1 : Nat
t1 : Nat
: (T-PRED)
pred t; : Nat
t1 : Nat
: (T-ISZERO)

iszero tq1 : Bool

Design Principles of Programming Language, Spring 2024 4

Typing Relation: Formal Definition

 Definition:

the typing relation for arithmetic expressions is the smallest binary
relation between terms and types satisfying all instances of the
typing rules.

« Aterm t is typable (or well typed) if there is some T such thatt: T.

Design Principles of Programming Language, Spring 2024 5

Chapter 9:
Simply Typed Lambda-Calculus

Function Types
The Typing Relation
Properties of Typing
The Curry-Howard Correspondence
Erasure and Typability

The simply typed lambda-calculus

* The system we are about to define is commonly called the simply
typed lambda-calculus, A_, for short.

« Unlike the untyped lambda-calculus, the “pure” form of A_, (with no
primitive values or operations) is not very interesting; to talk about A_,
we always begin with some set of “base types.”

— Strictly speaking, there are many variants of A_, , depending on
the choice of base types.

— For now, we’ll work with a variant constructed over the booleans.

Design Principles of Programming Language, Spring 2024

Untyped lambda-calculus with booleans

t = terms
X variable
AX.t abstraction
t t application
""""" true constant true
false constant false
__________ if t then t elset conditional
\A— values
AX.t abstraction value
- true true value
false false value

Design Principles of Programming Language, Spring 2024 8

Function Types

e T1 —> T

— classifying functions that expect arguments of type T1 and return results of
type T2.

« the type constructor — is right-associative, e.g.,
Ti— T2 — T3 stands forT1 — (T2 — T3)

 Let's consider Booleans with lambda calculus

T .= types :
Bool type of booleans
T—T type of functions

« Examples
— Bool — Bool
— (Bool — Bool) — (Bool — Bool)

Design Principles of Programming Language, Spring 2024

Typing rules

true : Bool (T-TrRUE)
false : Bool (T-FALSE)
t1 : Bool to ¢ T t3 ¢ T
1 2 3 (T-Ir)
1f t; then to else t3 : T
777
(T—Ags)

Design Principles of Programming Language, Spring 2024 10

Syntax
t o= terms:
Ko variable
FAX Tt abstraction
tt application
VoIS s values:
Ax Tt abstraction value
1| [types:
=TT type of functions
N contexs
% empty context
[,x:T term variable bmdmg

Assume: all variables in [are different

via renaming/internal

Design Principles of Programming Language, Spring 2024

Evaluation

t] — t)
t1 t2 — t]

th — 1t
p (E-ArP2)
V1 o —Vv1 5
E(AX Tll t12) Vo — [X — v2]t12 (E-APPABS)
Typing C[rreeT
«:TeT nemens (TVAR)
'x:T
I, X:Tlil— th 1 To
.......... T-ABS
rl— AX:T1.t2 : T1—T» ()
'ty : T11—-T 't : T
1 11 12 2 11 (T-APP)

'ty to: Tyo

11

A

« Whatis the relation between these two statements?
t: T
F t: T
these two relations are completely different things.

 We are dealing with several different small programming languages,
each with its own typing relation (between terms in that language and
types in that language)

— for the simple language of numbers and booleans, typing is a
binary relation between terms and types (t : T).

— for A_,, typing Is a ternary relation between contexts, terms, and
types (T t:T, Ft:T1Iif [=0)

Design Principles of Programming Language, Spring 2024 12

Type Derivation Tree

W hat derivations justify the following typing statement?
- (Ax: Bool. x) true : Bool

X:Bool € x:Bool
T-VAR

X:Bool - x : Bool

T-ABS T-TRUE
— Ax:Bool.x : Bool—Bool ~ true : Bool

T-APP
~ (Ax:Bool.x) true : Bool

Design Principles of Programming Language, Spring 2024 13

Properties of Typing

Inversion Lemma
Uniqueness of Types
Canonical Forms

Safety. Progress + Preservation

Inversion Lemma

1. If ' = true : R, then R = Bool.
2. If '+ false : R, then R = Bool.

3. f 'k 1if t1{ then to else t3 : R, then - t7 : Bool and
[- t>.t3 : R.

A IfI'+=x : R, then x:Re .

5. If ' Ax:Ty.t> : R, then R = T{—R» for some R, with
[, x:T{ Ft> : Ro.

6. If =ty to : R, then there is some type Ti1 such that
[Ft1 : Tyy—Rand '+t : Tq1.

Exercise: Is there any context I andtype T suchthat ' Fxx: T?

Design Principles of Programming Language, Spring 2024 15

Canonical Forms

e Lemma:

1. If v is a value of type Bool, then v is either true or false.

2. If v is a value of type T{—T», then v has the form Ax:T;.t».

Design Principles of Programming Language, Spring 2024 16

Uniqueness of Types

 Theorem [Uniqueness of Types]:

In a given typing context [, a term t (with free variables all in the
domain of /') has at most one type.

Moreover, there is just one derivation of this typing built from the
Inference rules that generate the typing relation.

Design Principles of Programming Language, Spring 2024 17

Progress

 Theorem [Progress]:
Suppose tis a closed, well-typed term. Then either t is a value or else
there is some t' with t — t'.

 Closed: No free variable

* Well-typed: +t:Tforsome T

* Proof: same steps as before...
- Inversion lemma for typing relation
- canonical forms lemma
- progress theorem

Design Principles of Programming Language, Spring 2024 18

Progress

 Theorem [Progress]:

Suppose tis a closed, well-typed term. Then either t is a value or else there is
some t' witht — t'.

Proof: By induction on typing derivations.

The cases for Boolean constants and conditions are the same as before.
The variable case is trivial (cannot occur because t is closed).
The abstraction case is immediate, since abstractions are values.

The case for application, where t =t; t, with -t,:T;; = T, and - t,: T;;. By the induction
hypothesis, either t, is a value or else it can make a step of evaluation, and likewise t..

If t; can take a step, then rule E-Appl applies to t.

If t; Is a value and t, can take a step, then rule E-App2 applies.

Finally, if both t; and t, are values, then the canonical forms lemma tells us that t; has the form
Ax: Ty4. t15, and so rule E-AppAbs applies to t.

Design Principles of Programming Language, Spring 2024 19

Preservation

* Theorem [Preservation]:
fI' ~t: Tandt—t,then -t :T.

Proof: By induction on typing derivations.

* Substitution Lemma [Preservation of types under substitution]:

f L xSFt:Tandl +-s:S, then I - [x— s]t: T.
Proof. By induction on derivation of [, x: S Ft:T

cases on the possible shape of t.

Design Principles of Programming Language, Spring 2024 20

Preservation

* Theorem [Preservation]:
fI' ~t: Tandt—t,then -t :T.

Proof: By induction on typing derivations.

* Substitution Lemma [Preservation of types under substitution]:

f L xSFt:Tandl +-s:S, then I - [x— s]t: T.
Proof. By induction on derivation of [, x: S Ft:T

cases on the possible shape of t.

Design Principles of Programming Language, Spring 2024 21

Preservation

* Theorem [Preservation]:
fI' ~t: Tandt—t,then -t :T.

Proof: By induction on typing derivations.

* Substitution Lemma [Preservation of types under substitution]:

f L xSFt:Tandl +-s:S, then I - [x— s]t: T.
Proof. By induction on derivation of [, x: S Ft:T

cases on the possible shape of t.

Design Principles of Programming Language, Spring 2024 22

The Curry-Howard Correspondence

« A connection between logic and type theory

LOGIC PROGRAMMING LANGUAGES
propositions types

proposition P O Q type P—-Q

proposition P A Q type P x Q (see §11.6)
proof of proposition P term t of type P

proposition P is provable type P is inhabited (by some term)

Design Principles of Programming Language, Spring 2024 23

Erasure and Typability

* Types are used during type checking, but do not need to appear In
the compiled form of the program.

« Terms In A, can be transformed to terms of the untyped lambda-
calculus simply by erasing type annotations on lambda-abstractions.

erase(x) X
erase(Ax:T1. t2) = Ax. erase(t))
erase(t; to) erase(ty) erase(tr)

Design Principles of Programming Language, Spring 2024 24

Erasure and Typability

« Conversely, an untyped A-term m is said to be typable if there iIs some
term t in the simply typed A -calculus, some type T, and some context

[such that
erase(t) =m and I —t: T
This process Is called type reconstruction or type inference.

THEOREM:

1. If t — t’ under the typed evaluation relation, then erase(t) — erase(t’).

typed term t’ such that t — 1’ and erase(t’) =m'. O

untyped

Design Principles of Programming Language, Spring 2024 25

Curry-Style vs. Church-Style

« Curry Style
— Syntax - Semantics > Typing
— Semantics Is defined on untyped terms
— Often used for implicit typed languages

* Church Style
— Syntax = Typing =2 Semantics
— Semantics Is defined only on well-typed terms
— Often used for explicit typed languages

Design Principles of Programming Language, Spring 2024 26

Homework

* Read through Chapter 9.
* Do Exercise 9.3.9.

THEOREM [PRESERVATION]: f 't : Tandt — t’,thenl'—t" : T. 0

Proof: EXERCISE |[RECOMMENDED, x*x*|. The structure is very similar to the
proof of the type preservation theorem for arithmetic expressions (8.3.3),
except for the use of the substitution lemma. O

Design Principles of Programming Language, Spring 2024 27

