

编程语言的设计原理 Design Principles of Programming Languages

Haiyan Zhao, Di Wang

Peking University, Spring Term 2024

The Typing Relation t : T

- Values have two possible "shapes":
	- ─ either *booleans*
	- ─ or *numbers*.

 $T \nightharpoonup :=$ **Bool** Nat

types type of booleans type of numbers

Typing Rules

Design Principles of Programming Language, Spring 2024 4

• **Definition**:

the *typing relation* for arithmetic expressions is the *smallest binary relation* between *terms* and *types* satisfying **all instances** of the typing rules.

• A term *t* is *typable* (or *well typed*) if there is some *T* such that *t : T*.

Chapter 9: Simply Typed Lambda-Calculus

Function Types The Typing Relation Properties of Typing The Curry-Howard Correspondence Erasure and Typability

The simply typed lambda-calculus

- The system we are about to define is commonly called the *simply typed lambda-calculus*, λ_{\rightarrow} , for short.
- Unlike the *untyped lambda-calculus*, the "pure" form of λ_{\rightarrow} (with no primitive values or operations) is not very interesting; to talk about λ_{\rightarrow} , we always begin with *some set of "base types*."
	- ─ Strictly speaking, there are *many variants* of λ[→] , depending on *the choice of base types*.
	- ─ For now, we'll work with *a variant constructed over the booleans*.

Design Principles of Programming Language, Spring 2024 8

Function Types

- $T_1 \rightarrow T_2$
	- ─ *classifying functions* that expect arguments of type T1 and return results of type T2.
- the type constructor \rightarrow is right-associative, e.g.,

 $T_1 \longrightarrow T_2 \longrightarrow T_3$ stands for $T_1 \longrightarrow (T_2 \longrightarrow T_3)$

• Let's consider *Booleans* with lambda calculus

 $T ::=$ types : Bool type of booleans $T \rightarrow T$ type of functions

- Examples
	- $-$ Bool \rightarrow Bool
	- $-$ (Bool \rightarrow Bool) \rightarrow (Bool \rightarrow Bool)

Typing rules

 $(T-A_{BS})$

$$
\begin{array}{c}\n 2??\n \hline\n 2x: T_1: t_2: T_1 \rightarrow T_2\n \end{array}
$$

Design Principles of Programming Language, Spring 2024 10 and the state of the

 λ

Design Principles of Programming Language, Spring 2024 11 and the state of the

• What is the relation between these two statements? $t : T$ ⊢ t : T

these two relations are *completely different things*.

- We are dealing with *several different small programming languages*, each with *its own typing relation* (between *terms* in that language and *types* in that language)
	- ─ for the *simple language of numbers* and *booleans*, typing is a *binary relation* between *terms* and *types* (t : T).
	- $−$ for λ _→, typing is a *ternary relation* between *contexts*, *terms*, and *types* (Γ ⊢ t : T, ⊢ t : T if $\Gamma = \emptyset$)

What derivations justify the following typing statement? ⊢ (λx: Bool. x) true : Bool

Properties of Typing

Inversion Lemma Uniqueness of Types Canonical Forms Safety: Progress + Preservation

Inversion Lemma

- 1. If $\Gamma \vdash$ true : R, then $R =$ Bool.
- 2. If Γ \vdash false : R, then R $=$ Bool.
- 3. If $\Gamma \vdash \text{if } t_1$ then t_2 else $t_3 : R$, then $\Gamma \vdash t_1 : B$ ool and $\Gamma \vdash t_2, t_3 : R.$
- 4. If $\Gamma \vdash x : R$, then $x: R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x : T_1.t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x: T_1 \vdash t_2 : R_2.$
- 6. If $\Gamma \vdash t_1 t_2$: R, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.

Exercise: Is there any context Γ and type T such that Γ ⊢ x x: T?

• Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type $T_1 \rightarrow T_2$, then v has the form $\lambda x : T_1.t_2$.

• **Theorem** [*Uniqueness of Types*]:

In a *given typing context Γ*, a term *t* (with free variables all in the domain of *Γ*) has *at most one type*.

Moreover, there is just *one derivation* of this typing built from the *inference rules* that generate the typing relation.

• **Theorem** [Progress]:

Suppose t is a *closed, well-typed term*. Then either t is a value or else there is some t' with $t \rightarrow t'$.

- *Closed*: No free variable
- *Well-typed*: ⊢ t : T for some T
- Proof: same steps as before...
	- − inversion lemma for typing relation
	- − canonical forms lemma
	- − progress theorem

Progress

• **Theorem** [Progress]:

Suppose t is a *closed, well-typed term*. Then either t is a value or else there is some t' with $t \rightarrow t'$.

- Proof: By induction on typing derivations.
- ─ The cases for *Boolean constants* and *conditions* are the same as before.
- The *variable case* is trivial (cannot occur because t is closed).
- ─ The *abstraction case* is immediate, since abstractions are values.
- The *case for application*, where $t = t_1 t_2$ with $t_1 : T_{11} \rightarrow T_{12}$ and $⊢ t_2 : T_{11}$. By the induction hypothesis, either t_1 is a value or else it can make a step of evaluation, and likewise t_2 .
- If t_1 can take a step, then rule E-App1 applies to t.
- If t_1 is a value and t_2 can take a step, then rule E-App2 applies.

Finally, if both t_1 and t_2 are values, then the canonical forms lemma tells us that t_1 has the form λ x: T $_{11}$. t_{12} , and so rule E-AppAbs applies to t.

• **Theorem** [Preservation]:

If Γ ⊢ t: T and t \rightarrow t', then Γ ⊢ t' :T.

Proof: By induction on typing derivations.

• **Substitution Lemma** [Preservation of types under substitution]: if Γ , x: S ⊢ t: T and Γ ⊢ s: S, then Γ ⊢ $[x \mapsto s]$ t: T. *Proof*: By induction on derivation of Γ, x: S ⊢ t : T *cases* on the possible *shape of t*.

• **Theorem** [Preservation]:

If Γ ⊢ t: T and t \rightarrow t', then Γ ⊢ t' :T.

Proof: By induction on typing derivations.

• **Substitution Lemma** [Preservation of types under substitution]: if Γ , x: S ⊢ t: T and Γ ⊢ s: S, then Γ ⊢ $[x \mapsto s]$ t: T. *Proof*: By induction on derivation of Γ, x: S ⊢ t : T *cases* on the possible *shape of t*.

• **Theorem** [Preservation]:

If Γ ⊢ t: T and t \rightarrow t', then Γ ⊢ t' :T.

Proof: By induction on typing derivations.

• **Substitution Lemma** [Preservation of types under substitution]: if Γ , x: S ⊢ t: T and Γ ⊢ s: S, then Γ ⊢ $[x \mapsto s]$ t: T. *Proof*: By induction on derivation of Γ, x: S ⊢ t : T *cases* on the possible *shape of t*.

• A connection between logic and type theory

- Types are used during *type checking*, but *do not need to appear* in the compiled form of the program.
- Terms in λ , can be transformed to terms of *the untyped lambdacalculus* simply by *erasing type annotations* on lambda-abstractions.

$$
erase(x) = x
$$

\n
$$
erase(\lambda x: T_1. t_2) = \lambda x. erase(t_2)
$$

\n
$$
erase(t_1 t_2) = erase(t_1) erase(t_2)
$$

• Conversely, an untyped λ-term m is said to be *typable* if there is some term t in the simply typed λ -calculus, some type T, and some context Γ such that

```
erase(t) = m and \Gamma ⊢ t: T
```
This process is called *type reconstruction* or *type inference*.

THEOREM:

- 1. If $t \rightarrow t'$ under the typed evaluation relation, then $\text{erase}(t) \rightarrow \text{erase}(t')$.
- 2. If $\text{erase}(\tau) \rightarrow m'$ under the typed evaluation relation, then there is a simply typed term t' such that $t \rightarrow t'$ and $\text{erase}(t') = m'$. \Box

untyped

- ─ Often used for *implicit* typed languages
- Church Style

• Curry Style

 $-$ Syntax \rightarrow Typing \rightarrow Semantics

Curry-Style vs. Church-Style

 $-$ Syntax \rightarrow Semantics \rightarrow Typing

- ─ Semantics is defined only on *well-typed terms*
- ─ Often used for *explicit* typed languages

Homework

- Read through Chapter 9.
- Do Exercise 9.3.9.

THEOREM [PRESERVATION]: If $\Gamma \vdash t$: T and $t \rightarrow t'$, then $\Gamma \vdash t'$: T. \Box

Proof: EXERCISE [RECOMMENDED, $\star \star \star$]. The structure is very similar to the proof of the type preservation theorem for arithmetic expressions (8.3.3), except for the use of the substitution lemma. \Box