

Design Principles of Programming Languages 编程语言的设计原理

Haiyan Zhao, Di Wang 赵海燕,王迪

Peking University, Spring Term 2025

Recursive Types 递归类型

Review: Lists Defined in Chapter 11

List T describes finite-length lists whose elements are of type T.

Syntactic Forms

```
\begin{split} t &\coloneqq \ldots \mid \text{nil}[T] \mid \text{cons}[T] \mid t \mid \text{isnil}[T] \mid t \mid \text{head}[T] \mid t \mid \text{tail}[T] \mid t \\ \nu &\coloneqq \ldots \mid \text{nil}[T] \mid \text{cons}[T] \mid \nu \mid \nu \\ T &\coloneqq \ldots \mid \text{List } T \end{split}
```

Typing Rules

$$\frac{\Gamma \vdash t_1 : T_1 \qquad \Gamma \vdash t_2 : List \ T_1}{\Gamma \vdash nil[T_1] : List \ T_1} \ T-Nil \qquad \qquad \frac{\Gamma \vdash t_1 : T_1 \qquad \Gamma \vdash t_2 : List \ T_1}{\Gamma \vdash cons[T_1] \ t_1 \ t_2 : List \ T_1} \ T-Cons} \\ \frac{\Gamma \vdash t_1 : List \ T_{11}}{\Gamma \vdash isnil[T_{11}] \ t_1 : Bool} \ T-lsNil \qquad \frac{\Gamma \vdash t_1 : List \ T_{11}}{\Gamma \vdash head[T_{11}] \ t_1 : T_{11}} \ T-Head} \qquad \frac{\Gamma \vdash t_1 : List \ T_{11}}{\Gamma \vdash tail[T_{11}] \ t_1 : List \ T_{11}} \ T-Tail}$$

BoolList: A Specialized Version

BoolList describes finite-length lists whose elements are of Booleans.

Syntactic Forms

```
\begin{split} t &\coloneqq \dots \mid \text{nil} \mid \text{cons } t \mid \text{isnil } t \mid \text{head } t \mid \text{tail } t \\ v &\coloneqq \dots \mid \text{nil} \mid \text{cons } v \mid v \\ T &\coloneqq \dots \mid \text{BoolList} \end{split}
```

Typing Rules

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{Bool} \qquad \Gamma \vdash \mathsf{t}_2 : \mathsf{BoolList}}{\Gamma \vdash \mathsf{nil} : \mathsf{BoolList}} \xrightarrow{\mathsf{T-Cons}} \mathsf{T-Cons}$$

$$\frac{\Gamma \vdash t_1 : BoolList}{\Gamma \vdash isnil \ t_1 : Bool} \ ^{T - lsNil}$$

$$\frac{\Gamma \vdash t_1 : \mathsf{BoolList}}{\Gamma \vdash \mathsf{head}\ t_1 : \mathsf{Bool}} \ \mathsf{T\text{-Head}}$$

$$\frac{\Gamma \vdash t_1 : BoolList}{\Gamma \vdash tail \ t_1 : BoolList}$$
T-Tail

Review: Natural Numbers Defined in Chapter 8

Nat describes natural numbers.

Syntactic Forms

```
\begin{array}{l} t := \ldots \mid \theta \mid succ \; t \mid iszero \; t \mid pred \; t \\ \nu := \ldots \mid \theta \mid succ \; \nu \\ T := \ldots \mid Nat \end{array}
```

Typing Rules

$$\frac{\Gamma \vdash t_1 : \mathsf{Nat}}{\Gamma \vdash \mathsf{succ} \ t_1 : \mathsf{Nat}} \ \mathsf{T\text{-}Succ}$$

$$\frac{\Gamma \vdash t_1 : \mathsf{Nat}}{\Gamma \vdash \mathsf{iszero} \ t_1 : \mathsf{Bool}} \ \mathsf{T\text{-}IsZero}$$

$$\frac{\Gamma \vdash t_1 : \mathsf{Nat}}{\Gamma \vdash \mathsf{pred} \ t_1 : \mathsf{Nat}} \ \mathsf{T\text{-}Pred}$$

Similarity between Lists and Natural Numbers

Question

Do you notice that the **structures** and **rules** for lists and natural numbers are very similar?

Introduction Forms

Terms that **introduce** (or **construct**) values of a certain type.

- Boolean lists: nil and cons t t
- Natural numbers: 0 and succ t

Elimination Forms

Terms that **eliminate** (or **destruct**) values of a certain type.

They tell us how to **use** those values.

- Boolean lists: isnil t, head t, and tail t
- Natural numbers: iszero t and pred t

Unifying Introduction Forms for A Type

It would be useful to unify multiple introduction forms into a single one.

Boolean Lists

A Boolean list is either (i) an empty list nil, or (ii) a cons list of a Boolean and a Boolean list.

$$\frac{\Gamma \vdash t_1 : \mathsf{Unit} + \mathsf{Bool} \times \mathsf{BoolList}}{\Gamma \vdash \mathsf{fold} \; [\mathsf{BoolList}] \; t_1 : \mathsf{BoolList}} \; \mathsf{T\text{-}Fold\text{-}BoolList}}$$

We use sum types to unify multiple possibilities.

That is, ${\tt Unit}$ stands for case i and ${\tt BoolList}$ stands for case ii.

Remark (Sum Types)

$$\begin{split} \frac{\Gamma \vdash t_1 : T_1}{\Gamma \vdash \mathsf{inl}\ t_1 : T_1 + T_2} \ \mathsf{T-Inl} & \frac{\Gamma \vdash t_1 : T_2}{\Gamma \vdash \mathsf{inr}\ t_1 : T_1 + T_2} \ \mathsf{T-Inr} \\ \frac{\Gamma \vdash t_0 : T_1 + T_2}{\Gamma \vdash \mathsf{case}\ t_0\ \mathsf{of}\ \mathsf{inl}\ x_1 \Rightarrow t_1 \mid \mathsf{inr}\ x_2 \Rightarrow t_2 : \mathsf{T}} \mathsf{T-Case} \end{split}$$

Unifying Introduction Forms for A Type

Natural Numbers

A natural number is either (i) zero 0, or (ii) a **succ** of a natural number.

$$\frac{\Gamma \vdash t_1 : \mathsf{Unit} + \mathsf{Nat}}{\Gamma \vdash \mathsf{fold} \; [\mathsf{Nat}] \; t_1 : \mathsf{Nat}} \; \mathsf{T\text{-}Fold\text{-}Nat}$$

Similarly, Unit stands for case i and Nat stands for case ii.

Example

```
\begin{split} \theta &\equiv \text{fold [Nat] (inl unit)} \\ \text{succ } t &\equiv \text{fold [Nat] (inr } t) \\ \\ \text{nil} &\equiv \text{fold [BoolList] (inl unit)} \\ \text{cons } t_1 \ t_2 &\equiv \text{fold [BoolList] (inr } \{t_1, t_2\}) \end{split}
```

Generalizing the fold Operator

Question

Can we **inline** the meaning of **BoolList** into **fold**?

Recursion Operator μ

We can think of BoolList as a type satisfying the equation BoolList = Unit + Bool \times BoolList. Abstractly, it is a solution to the equation $\mathbf{X} = \mathbf{Unit} + \mathbf{Bool} \times \mathbf{X}$. Let us denote it by $\mu \mathbf{X}$. Unit + Bool $\times \mathbf{X}$.

Principle

Let us write fold [X. Unit + Bool \times X] for fold [BoolList].

$$\frac{\Gamma \vdash t_1 : \mathsf{Unit} + \mathsf{Bool} \times (\mu X.\,\mathsf{Unit} + \mathsf{Bool} \times X)}{\Gamma \vdash \mathsf{fold}\; [X.\,\mathsf{Unit} + \mathsf{Bool} \times X]\; t_1 : \mu X.\,\mathsf{Unit} + \mathsf{Bool} \times X}\;\mathsf{T\text{-}Fold\text{-}BoolList}$$

$$\frac{\Gamma \vdash t_1 : [X \mapsto \mu X. T]T}{\Gamma \vdash \mathsf{fold} [X. T] \ t_1 : \mu X. T} \text{ T-Fold}$$

Generalizing the fold Operator

$$\frac{\Gamma \vdash t_1 : [X \mapsto \mu X. T]T}{\Gamma \vdash \mathsf{fold} [X. T] \ t_1 : \mu X. T} \text{ T-Fold}$$

Example (Boolean Lists)

$$\begin{split} \text{BoolList} &\equiv \mu X.\, \text{Unit} + \text{Bool} \times X \\ &\text{nil} \equiv \text{fold} \, [X.\, \text{Unit} + \text{Bool} \times X] \, (\text{inl unit}) \\ &\text{cons} \, t_1 \, t_2 \equiv \text{fold} \, [X.\, \text{Unit} + \text{Bool} \times X] \, (\text{inr} \, \{t_1, t_2\}) \end{split}$$

Example (Natural Numbers)

$$\begin{split} \text{Nat} &\equiv \mu X.\, \text{Unit} + X \\ &\theta \equiv \text{fold} \, [X.\, \text{Unit} + X] \, (\text{inl unit}) \\ \text{succ} \, t &\equiv \text{fold} \, [X.\, \text{Unit} + X] \, (\text{inr} \, t) \end{split}$$

Recursive Types

The types we worked on so far (e.g., BoolList and Nat) are recursive types.

Observation

Every value of a recursive type is the **folding** of a value of the **unfolding** of the recursive type.

$$\frac{\Gamma \vdash t_1 : [X \mapsto \mu X.\,T]T}{\Gamma \vdash \text{fold}\; [X.\,T]\; t_1 : \mu X.\,T} \; \text{T-Fold}$$

Solving the Type Equation

Let $[\![T]\!]$ be the set of values of type T, e.g., $[\![Unit]\!] = \{unit\}$, $[\![Bool]\!] = \{true, false\}$. Consider BoolList. The solution $[\![X]\!]$ to the equation $X = Unit + Bool \times X$ should satisfy:

$$[\![X]\!] \cong \big\{ \text{inl unit} \big\} \cup \big\{ \text{inr } \{\nu_1, \nu_2\} \mid \nu_1 \in [\![\mathsf{Bool}]\!], \nu_2 \in [\![X]\!] \big\}$$

Principle

Recursive types denote the solutions to type equations.

Unifying Elimination Forms for A Type

Remark

Recall that elimination forms destruct values of a certain type.

Observation

For the type μX . T, the operator fold [X,T] can be thought of as a function with type $[X\mapsto \mu X,T]T\to \mu X$. T.

- Boolean lists: fold [X. Unit + Bool \times X] : Unit + Bool \times BoolList \rightarrow BoolList
- Natural numbers: fold [X. Unit + X] : Unit $+ Nat \rightarrow Nat$

Principle

Elimination forms are the inverse of introduction forms.

- Boolean lists: the elimination form has type BoolList o Unit + Bool imes BoolList.
- Natural numbers: the elimination form has type Nat ightarrow Unit + Nat

In general, the elimination forms have type $\mu X. T \rightarrow [X \mapsto \mu X. T]T$.

Unifying Elimination Forms for A Type

Principle

For the type $\mu X.$ T, its elimination form has type $\mu X.$ T \rightarrow [X \mapsto $\mu X.$ T]T.

$$\frac{\Gamma \vdash t_1 : [X \mapsto \mu X.\,T]T}{\Gamma \vdash \text{fold}\ [X.\,T]\ t_1 : \mu X.\,T} \text{ T-Fold}$$

$$\frac{\Gamma \vdash t_1 : \mu X.\,T}{\Gamma \vdash \text{unfold} \; [X.\,T] \; t_1 : [X \mapsto \mu X.\,T]T} \; \text{T-Unfold}$$

Example (Boolean Lists)

```
\frac{\Gamma \vdash t_1 : \mathsf{BoolList}}{\Gamma \vdash \mathsf{unfold} \; [X. \, \mathsf{Unit} + \mathsf{Bool} \times X] \; t_1 : \mathsf{Unit} + \mathsf{Bool} \times \mathsf{BoolList}} \; \mathsf{T\text{-}Unfold\text{-}BoolList}
```

```
isnil t \equiv \text{case unfold } [X.\, \text{Unit} + \text{Bool} \times X] \ t \ \text{of inl} \ x_1 \Rightarrow \text{true} \ | \ \text{inr} \ x_2 \Rightarrow \text{false} head t \equiv \text{case unfold } [X.\, \text{Unit} + \text{Bool} \times X] \ t \ \text{of inl} \ x_1 \Rightarrow \text{error} \ | \ \text{inr} \ x_2 \Rightarrow x_2.1 tail t \equiv \text{case unfold } [X.\, \text{Unit} + \text{Bool} \times X] \ t \ \text{of inl} \ x_1 \Rightarrow \text{error} \ | \ \text{inr} \ x_2 \Rightarrow x_2.2
```

Unifying Elimination Forms for A Type

Principle

For the type μX . T, its elimination form has type μX . T \to $[X \mapsto \mu X$. T]T.

$$\frac{\Gamma \vdash t_1 : [X \mapsto \mu X.\,T]T}{\Gamma \vdash \text{fold}\; [X.\,T]\; t_1 : \mu X.\,T} \; \text{T-Fold}$$

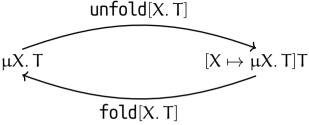
$$\frac{\Gamma \vdash t_1 : \mu X.\,T}{\Gamma \vdash \text{unfold} \; [X.\,T] \; t_1 : [X \mapsto \mu X.\,T]T} \; \text{T-Unfold}$$

Example (Natural Numbers)

$$\frac{\Gamma \vdash t_1 : \text{Nat}}{\Gamma \vdash \text{unfold} \ [X. \, \text{Unit} + X] \ t_1 : \text{Unit} + \text{Nat}} \ \text{T-Unfold-Nat}$$

iszero $t \equiv case$ unfold [X. Unit + X] t of inl $x_1 \Rightarrow true \mid inr \ x_2 \Rightarrow false$ pred $t \equiv case$ unfold [X. Unit + X] t of inl $x_1 \Rightarrow 0 \mid inr \ x_2 \Rightarrow x_2$

The Iso-Recursive Approach



- $[X \mapsto \mu X. T]T$ is the one-step unfolding of $\mu X. T.$
- The pair of functions unfold[X. T] and fold[X. T] are witness functions for isomorphism.

Question

Use the iso-recursive approach to formulate a type for binary trees containing a Boolean in each internal node.

Question

OCaml/MoonBit uses iso-recursive types (by default). Where are the fold's and unfold's?

Examples of Recursive Types

Remark

We have studied tuples and variants.

- Tuples: $\{T_i^{i \in 1...n}\}$
- Variants: $\langle l_i : T_i^{i \in 1...n} \rangle$

Example

Let us revisit Boolean lists and natural numbers.

```
\begin{aligned} \text{BoolList} &\equiv \mu X. < \text{nil} : \text{Unit, cons} : \{\text{Bool}, X\}> \\ &\text{Nat} &\equiv \mu X. < \text{zero} : \text{Unit, succ} : X> \end{aligned}
```

Lists with Natural-Number Elements


```
NatList = uX. <nil:Unit, cons:{Nat,X}>;
nil = fold [NatList] <nil=unit>;
▶ nil : Natlist
cons = λn:Nat. λl:NatList. fold [NatList] <cons={n,l}>;

ightharpoonup cons : Nat 
ightharpoonup Natlist 
ightharpoonup Natlist
isnil = \lambda1:NatList. case unfold [NatList] l of <nil=u> \Rightarrow true | <cons=p> \Rightarrow false;
▶ isnil : NatList → Bool
head = \lambda1:NatList. case unfold [NatList] | of <nil=u> \Rightarrow error | <cons=p> \Rightarrow p.1;
► head : NatList → Nat
tail = \lambdal:NatList. case unfold [NatList] | of <nil=u> \Rightarrow error | <cons=p> \Rightarrow p.2;
► tail : Natlist → Natlist
sumlist = fix (\lambdas:NatList\rightarrowNat. \lambdal:NatList.
                     if isnil l then 0 else plus (head l) (s (tail l)));
▶ sumlist : Natlist → Nat
```

Hungry Functions

Hungry Functions

A hungry function accepts any number of arguments and always return a new function that is hungry for more.

```
Hungry = \mu A. Nat\rightarrow A;
f = fix (\lambda f: Nat \rightarrow Hungry. \lambda n: Nat. fold [Hungry] f);
▶ f : Nat→Hungry
f 0;
► fold [Hungry] <fun> : Hungry
unfold [Hungry] (f 0);
► <fun> : Nat→Hungry
unfold [Hungry] (unfold [Hungry] (f 0) 1) 2;
▶ fold [Hungry] <fun> : Hungry
```

Streams

Streams

A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.

```
Stream = \mu A. Unit\rightarrow{Nat,A};
head = \lambdas:Stream. (unfold [Stream] s unit).1;
\blacktriangleright head : Stream \rightarrow Nat
tail = \lambdas:Stream. (unfold [Stream] s unit).2;
\blacktriangleright tail : Stream \rightarrow Stream
upfrom0 = \mathbf{fix} (\lambdaf:Nat\rightarrowStream. \lambdan:Nat. \mathbf{fold} [Stream] (\lambda_:Unit. {n,f (succ n)})) 0;
\blacktriangleright upfrom0 : Stream
```

Question

Define a stream that yields successive elements of the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, . . .).

Streams

Processes

A process accepts a value and returns a value and a new process.

Process =
$$\mu A$$
. Nat \rightarrow {Nat,A}

Objects

Purely Functional Objects

An object accepts a message and returns a response to that message and **a new object** if mutated.

```
Counter = \mu C. {get:Nat, inc:Unit\rightarrow C, dec:Unit\rightarrow C};
c1 = let create = fix (\lambdaf:{x:Nat}\rightarrowCounter. \lambdas:{x:Nat}.
                              fold [Counter]
                                 \{qet = s.x.\}
                                  inc = \lambda :Unit. f {x=succ(s.x)},
                                  dec = \lambda : Unit. f \{x = pred(s.x)\} \}
      in create {x=0};
► c1 : Counter
c2 = (unfold [Counter] c1).inc unit;
► c2 : Counter
(unfold [Counter] c2).get;
▶ 1 : Nat
```

Divergence

Remark

Recall omega from untyped lambda-calculus:

omega =
$$(\lambda x. x x) (\lambda x. x x)$$

We have omega \longrightarrow omega \longrightarrow omega \longrightarrow . . ., i.e., omega diverges.

Suppose we want to type $x: T_x \vdash x \ x: T$ for a given T. We obtain a type equation:

$$T_x = T_x \to T$$

Thus T_x can be defined as μA . $A \to T$.

Well-Typed Divergence

```
Div_T = \mu A. A \rightarrow T;

omega_T = (\lambda x: Div_T. unfold [Div_T] \times x) (fold [Div_T] (\lambda x: Div_T. unfold [Div_T] \times x));

\blacktriangleright omega_T : T
```

Recursive types break the **strong-normalization** property (c.f., Chapter 12) **without** using fixed points!

Recursion

Remark

Recall the Y operator from untyped lambda-calculus:

$$Y = \lambda f. (\lambda x. f(x x)) (\lambda x. f(x x))$$

For any f, the operator satisfies Y f \longrightarrow * f (($\lambda x.f(xx)$) ($\lambda x.f(xx)$)) = $_{\beta}$ f (Y f).

Question

Can we give Y a type using recursive types?

```
Y_T = \lambda f: T \rightarrow T.

(\lambda x: Div_T. f (unfold [Div_T] x x)) (fold [Div_T] (\lambda x: Div_T. f (unfold [Div_T] x x)));

\blacktriangleright Y_T : (T \rightarrow T) \rightarrow T
```

Question (Homework)

Implement Y_T in OCaml/MoonBit. Does it really work as a fixed-point operator? Why? How to make it work? Show your solution is effective by using it to define three recursive functions.

Untyped Lambda-Calculus

We can embed the whole untyped lambda-calculus into a statically typed language with recursive types.

Let M be a closed untyped lambda-term. We can embed M, written M^* , as an element of D.

$$\begin{split} x^{\star} &= x \\ (\lambda x.\, M)^{\star} &= \text{lam} \left(\lambda x. D.\, M^{\star}\right) \\ (M\, N)^{\star} &= \text{ap}\, M^{\star}\, N^{\star} \end{split}$$

Formulation of Iso-Recursive Types ($\lambda\mu$)

Syntactic Forms

$$t := \dots \mid fold [X. T] t \mid unfold [X. T] t$$
 $v := \dots \mid fold [X. T] v$ $T := \dots \mid X \mid \mu X. T$

$$\nu := \dots \mid \mathsf{fold} [X.T] \nu$$

$$T := \dots \mid X \mid \mu X. T$$

Typing and Evaluation Rules

$$\frac{\Gamma \vdash t_1 : [X \mapsto \mu X. \, T_1] T_1}{\Gamma \vdash \text{fold} \ [X. \, T_1] \ t_1 : \mu X. \, T_1} \ \text{T-Fold}$$

$$\frac{\Gamma \vdash t_1 : \mu X. \, T_1}{\Gamma \vdash \text{unfold} \; [X. \, T_1] \; t_1 : [X \mapsto \mu X. \, T_1] T_1} \; \text{T-Unfold}$$

$$\frac{}{\text{unfold} \; [\text{X. S}] \; (\text{fold} \; [\text{Y. T}] \; \nu_1) \longrightarrow \nu_1} \; \text{E-UnfoldFold}$$

$$\frac{\mathsf{t}_1 \longrightarrow \mathsf{t}_1'}{\mathsf{fold} \ [\mathsf{X}.\ \mathsf{T}] \ \mathsf{t}_1 \longrightarrow \mathsf{fold} \ [\mathsf{X}.\ \mathsf{T}] \ \mathsf{t}_1'} \ \mathsf{E}\text{-}\mathsf{Fold}$$

$$\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\mathsf{fold} \; [\mathtt{X}.\, \mathtt{T}] \; \mathtt{t}_1 \longrightarrow \mathsf{fold} \; [\mathtt{X}.\, \mathtt{T}] \; \mathtt{t}_1'} \; \mathsf{E}\text{-}\mathsf{Fold}}{\mathsf{unfold} \; [\mathtt{X}.\, \mathtt{T}] \; \mathtt{t}_1 \longrightarrow \mathsf{unfold} \; [\mathtt{X}.\, \mathtt{T}] \; \mathtt{t}_1'} \; \mathsf{E}\text{-}\mathsf{Unfold}}$$

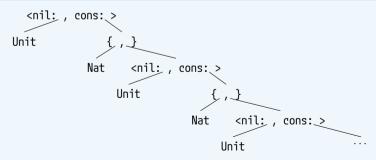
Another Approach to Recursive Types

Question

Let us revisit the question: what is the relation between the type μX . T and its one-step unfolding $[X \mapsto \mu X, T]T$?

NatList \sim <nil : Unit, cons : {Nat.NatList}>

NatList as An Infinite Tree



Another Approach to Recursive Types

NatList ~ <nil: Unit, cons: {Nat, NatList}>

The Iso-Recursive Approach

- Take a recursive type and its unfolding as different, but isomorphic.
- This approach is notationally heavier, requiring programs to be decorated with fold and unfold instructions wherever recursive types are used.

The Equi-Recursive Approach

- Take these two type expressions as definitionally equal—interchangeable in all contexts—because they stand
 for the same infinite tree.
- This approach is more intuitive, but places stronger demands on the type-checker.

Lists under Equi-Recursive Types


```
NatList = uX. <nil:Unit, cons:{Nat,X}>;
nil = <nil=unit> as NatList;
▶ nil : Natlist
cons = \lambdan:Nat. \lambdal:NatList. <cons={n,l}> as NatList;
\triangleright cons : Nat \rightarrow Natlist \rightarrow Natlist
isnil = \lambdal:NatList. case | of <nil=u> \Rightarrow true | <cons=p> \Rightarrow false;
▶ isnil : Natlist → Bool
head = \lambda1:NatList. case | of <nil=u> \Rightarrow error | <cons=p> \Rightarrow p.1;
▶ head : Natlist → Nat
tail = \lambda1:NatList. case | of <nil=u> \Rightarrow error | <cons=p> \Rightarrow p.2;
```

Question

Re-implement previous examples of iso-recursive types under equi-recursive types.

Recursive Types are Useless as Logics

Remark (Curry-Howard Correspondence)

In simply-typed lambda-calculus, we can interpret types as logical propositions (c.f., Chapter 9).

proposition $P \supset Q$	type P $ ightarrow$ Q
proposition P \wedge Q	$type\ P\timesQ$
proposition P \vee Q	$type\ P + Q$
proposition P is provable	type P is inhabited
proof of proposition P	term t of type P

Observation

Recursive types are so powerful that the strong-normalization property is broken.

omega_T =
$$(\lambda x: (\mu A. A \rightarrow T). x x) (\lambda x: (\mu A. A \rightarrow T). x x);$$

 \blacktriangleright omega_T : T

The fact that $omega_T$ is well-typed for every T means that every proposition in the logic is provable—that is, the logic is inconsistent.

Restricting Recursive Types

Question

Suppose that we are not allowed to use fixed points.
What kinds of recursive types can ensure strong-normalization? What kinds cannot?

```
\begin{array}{ccc} \text{Lists} & \mu X. \, < \text{nil}: \, \text{Unit}, \, \text{cons}: \, \{\text{Nat}, \, X\} > & \checkmark \\ \text{Streams} & \mu A. \, \text{Unit} \rightarrow \{\text{Nat}, \, A\} & \checkmark \\ \text{Divergence} & \mu A. \, A \rightarrow \, \text{Nat} & \checkmark \\ \text{Untyped lambda-calculus} & \mu X. \, X \rightarrow X & \checkmark \\ \end{array}
```

Observation

It seems problematic for a recursive type to recurse in the **contravariant** positions.

Positive Type Operators

X. T pos: "type operator X. T is positive"

$$\frac{X.\,T_1\;\text{pos}\qquad X.\,T_2\;\text{pos}}{X.\,X\,\text{pos}} \qquad \frac{X.\,T_1\;\text{pos}\qquad X.\,T_2\;\text{pos}}{X.\,T_1\times T_2\;\text{pos}} \qquad \frac{X.\,T_1\;\text{pos}\qquad X.\,T_2\;\text{pos}}{X.\,T_1+T_2\;\text{pos}} \qquad \frac{T_1\;\text{type}\qquad X.\,T_2\;\text{pos}}{X.\,T_1\to T_2\;\text{pos}} \qquad \frac{X.\,T_1\;\text{pos}\qquad X.\,T_2\;\text{pos}}{X.\,T_1+T_2\;\text{pos}} \qquad \frac{X.\,T_1\;\text{pos}\qquad X.\,T_2\;\text{pos}}{X.\,T$$

Question

Which of the following type operators are positive?

$$X. < \text{nil}: \text{Unit}, \text{cons}: \{\text{Nat}, X\} > A. \text{Unit} \rightarrow \{\text{Nat}, A\} \quad A. A \rightarrow \text{Nat} \quad X. X \rightarrow X$$

Inductive & Coinductive Types

Positive type operators can be used to build **inductive** and **coinductive** types.

Syntactic Forms

```
T := \dots \mid X \mid \text{ind}(X, T) \mid \text{coi}(X, T)  where X. T pos t := \dots \mid \text{fold } [X, T] \mid t \mid \text{unfold } [X, T] \mid t
```

Remark (Solving the Type Equation)

Let $[\![T]\!]$ be the set of values of type T, e.g., $[\![Unit]\!] = \{unit\}$, $[\![Bool]\!] = \{true, false\}$. Consider BoolList. The solution $[\![X]\!]$ to the equation $X = Unit + Bool \times X$ should satisfy:

$$[\![X]\!] \cong \big\{ \texttt{inl unit} \big\} \cup \big\{ \texttt{inr} \, \{\nu_1, \nu_2\} \, | \, \nu_1 \in [\![\mathsf{Bool}]\!], \nu_2 \in [\![X]\!] \big\}$$

Principle

Inductive types are the **least** solutions. For example, the least solution to X = Unit + X is isomorphic to \mathbb{N} . Coinductive types are the **greatest** solutions.

Well-Founded Recursion for Inductive Types

Question

How to compute the length of a Boolean list? Can you do that **without** using fixed points?

Question

Is there a way to allow useful recursion schemes on Boolean lists, without allowing general fixed points?

Principle (Structural Recursion)

The argument of a recursion function call can only be the **sub-structures** of the function parameter.

len t =case unfold [X. Unit + Bool \times X] t of inl $x_1 \Rightarrow 0$ | inr $x_2 \Rightarrow$ succ (len $x_2.2$)

It is just iteration!

An Iteration Operator for Boolean Lists

Remark (Specialized Introduction Form)

```
\frac{\Gamma \vdash t_1 : \mathsf{Unit} + \mathsf{Bool} \times \mathsf{BoolList}}{\Gamma \vdash \mathsf{fold} \; [\mathsf{BoolList}] \; t_1 : \mathsf{BoolList}} \; \mathsf{T\text{-}Fold\text{-}BoolList}}
```

Principle (Structural Recursion via Iteration)

```
\frac{\Gamma \vdash t_1 : \mathsf{BoolList} \qquad \Gamma, x : \mathsf{Unit} + \mathsf{Bool} \times \frac{\mathsf{S} \vdash t_2 : \mathsf{S}}{\mathsf{F} \vdash \mathbf{iter} \; [\mathsf{BoolList}] \; t_1 \; \mathbf{with} \; x. \; t_2 : \mathsf{S}} \; \mathsf{T\text{--lter-BoolList}}
```

iter [BoolList] (fold [BoolList] $\nu)$ with $x,t_2 \longrightarrow t'$ E-lter-BoolList

where

$$t'\equiv \textbf{let}\ x=\text{case}\ \nu\ \text{of inl}\ x_1\Rightarrow \text{inl}\ x_1\mid$$

$$\text{inr}\ x_2\Rightarrow \text{inr}\ \{x_2.1, \textbf{iter}\ [\text{BoolList}]\ x_2.2\ \textbf{with}\ x.\ t_2\}$$

$$\textbf{in}\ t_2$$

An Iteration Operator for Boolean Lists


```
\frac{\Gamma \vdash t_1 : \mathsf{BoolList}}{\Gamma \vdash \mathbf{iter} \; [\mathsf{BoolList}] \; t_1 \; \mathbf{with} \; x. \; t_2 : \underbrace{S}}{\Gamma \vdash \mathbf{iter} \; [\mathsf{BoolList}] \; t_1 \; \mathbf{with} \; x. \; t_2 : \underbrace{S}}
```

Example

```
isnil t \equiv \text{iter} [BoolList] t with x. case x of inl x_1 \Rightarrow t rue | inr x_2 \Rightarrow f alse len t \equiv \text{iter} [BoolList] t with x. case x of inl x_1 \Rightarrow 0 | inr x_2 \Rightarrow s ucc x_2.2
```

Question

Write down the evaluation of len ℓ_2 where:

```
\ell_2 \equiv \text{fold [BoolList] (inr \{true, \ell_1\})}

\ell_1 \equiv \text{fold [BoolList] (inr \{false, \ell_0\})}

\ell_0 \equiv \text{fold [BoolList] (inl unit)}
```

An Iteration Operator for Natural Numbers

Let us repeat the same development for the inductive type of natural numbers.

$$\frac{\Gamma \vdash t_1 : \mathsf{Unit} + \mathsf{Nat}}{\Gamma \vdash \mathsf{fold} \; \mathsf{[Nat]} \; t_1 : \mathsf{Nat}} \; \mathsf{T\text{-}Fold\text{-}Nat}$$

Now consider iteration over natural numbers.

$$\frac{\Gamma \vdash t_1 : \mathsf{Nat} \qquad \Gamma, x : \mathsf{Unit} + \frac{\mathsf{S} \vdash t_2 : \mathsf{S}}{\Gamma \vdash \textbf{iter} \; [\mathsf{Nat}] \; t_1 \; \textbf{with} \; x. \; t_2 : \mathsf{S}} }{\Gamma \vdash \textbf{iter} \; [\mathsf{Nat}] \; t_1 \; \textbf{with} \; x. \; t_2 : \mathsf{S}} \; \mathsf{T-lter-Nat}$$

iter [Nat] (fold [Nat]
$$\nu$$
) with $x. t_2 \longrightarrow t'$ E-lter-Nat

where

$$t' \equiv \textbf{let} \; x = \text{case} \; \nu \; \text{of inl} \; x_1 \; \Rightarrow \; \text{inl} \; x_1 \; | \\ \quad \quad \text{inr} \; x_2 \; \Rightarrow \; \text{inr} \; (\textbf{iter} \; [\textbf{Nat}] \; x_2 \; \textbf{with} \; x. \; \mathbf{t}_2)$$

in t₂

Question

Can we **inline** the meaning of **BoolList** into **iter**?

Principle

Let us write **iter** [X. Unit + Bool \times X] for **iter** [BoolList].

$$\frac{\Gamma \vdash t_1 : \mathsf{ind}(\mathsf{X}.\,\mathsf{Unit} + \mathsf{Bool} \times \mathsf{X})}{\Gamma \vdash \mathsf{iter}\;[\mathsf{X}.\,\mathsf{Unit} + \mathsf{Bool} \times \mathsf{X}]\;t_1\;\mathsf{with}\;x.\;t_2 : \mathsf{S}} \\ \top \vdash \mathsf{iter}\;[\mathsf{X}.\,\mathsf{Unit} + \mathsf{Bool} \times \mathsf{X}]\;t_1\;\mathsf{with}\;x.\;t_2 : \mathsf{S}}$$

$$\frac{\Gamma \vdash t_1 : \textbf{ind}(X.\,T)}{\Gamma \vdash \textbf{iter}\,\,[X.\,T]\,\,t_1\,\,\textbf{with}\,\,x.\,\,t_2 : S} \,\, \text{T-lter}$$

$$\frac{\Gamma \vdash t_1 : \textbf{ind}(X.T) \qquad \Gamma, x : [X \mapsto S]T \vdash t_2 : S}{\Gamma \vdash \textbf{iter} \ [X.T] \ t_1 \ \textbf{with} \ x. \ t_2 : S} \text{ T-lter}$$

Principle

Let us write fold [X. Unit + Bool \times X] for fold [BoolList].

$$\begin{split} \frac{\Gamma \vdash t_1 : \text{Unit} + \text{Bool} \times \text{ind}(X, \text{Unit} + \text{Bool} \times X)}{\Gamma \vdash \text{fold} \ [X, \text{Unit} + \text{Bool} \times X] \ t_1 : \text{ind}(X, \text{Unit} + \text{Bool} \times X)} \end{split} \text{ T-Fold-BoolList} \\ \frac{\Gamma \vdash t_1 : [X \mapsto \text{ind}(X, T)] T}{\Gamma \vdash \text{fold} \ [X, T] \ t_1 : \text{ind}(X, T)} \xrightarrow{\text{T-Fold}} \end{split}$$

Question

What about the evaluation rules for **iter**?


```
\frac{\Gamma \vdash t_1 : \mathsf{ind}(\mathsf{X}.\mathsf{T}) \qquad \Gamma, x : [\mathsf{X} \mapsto \mathsf{S}]\mathsf{T} \vdash t_2 : \mathsf{S}}{\Gamma \vdash \mathsf{iter} \ [\mathsf{X}.\mathsf{T}] \ t_1 \ \mathsf{with} \ x. \ t_2 : \mathsf{S}} \ \mathsf{T-lter} \frac{\mathsf{iter} \ [\mathsf{X}.\mathsf{Unit} + \mathsf{Bool} \times \mathsf{X}] \ (\mathsf{fold} \ [\mathsf{X}.\mathsf{Unit} + \mathsf{Bool} \times \mathsf{X}] \ \nu) \ \mathsf{with} \ x. \ t_2 \longrightarrow \mathsf{t'}}{\mathsf{t'}} \ \mathsf{E-lter-BoolList}} where \mathsf{t'} \equiv \mathsf{let} \ x = \mathsf{case} \ \nu \ \mathsf{of} \ \mathsf{inl} \ x_1 \Rightarrow \mathsf{inl} \ x_1 \mid \\ \mathsf{inr} \ x_2 \Rightarrow \mathsf{inr} \ \{x_2.1, \ \mathsf{iter} \ [\mathsf{X}.\mathsf{Unit} + \mathsf{Bool} \times \mathsf{X}] \ x_2.2 \ \mathsf{with} \ x. \ t_2\} \mathsf{in} \ t_2
```

Observation

iter [X. T] (**fold** [X. T] ν) **with** x. t_2 should replace every sub-structure ν_{sub} of ν that corresponds to an occurrence of X in T by **iter** [X. T] ν_{sub} **with** x. t_2 .

Observation

iter [X. T] (**fold** [X. T] ν) **with** x. t_2 should replace every sub-structure ν_{sub} of ν that corresponds to an occurrence of X in T by **iter** [X. T] ν_{sub} **with** x. t_2 .

Principle

The operator **map** is defined **inductively** on the structure of the **positive** type operator.

 $\frac{}{\text{map }[X.\,X]\,\nu\,\text{with }y.\,t_2\longrightarrow[y\mapsto\nu]t_2}\,\,\text{E-Map-Var}\\ \frac{}{\text{map }[X.\,\text{Unit}]\,\nu\,\text{with }y.\,t_2\longrightarrow\nu}\,\,\text{E-Map-Unit}$

 $\overline{\text{map} \; [X. \, \mathsf{T}_1 \times \mathsf{T}_2] \; \nu \; \text{with} \; y. \; \mathsf{t}_2 \longrightarrow \{\text{map} \; [X. \, \mathsf{T}_1] \; \nu. 1 \; \text{with} \; y. \; \mathsf{t}_2, \, \text{map} \; [X. \, \mathsf{T}_2] \; \nu. 2 \; \text{with} \; y. \; \mathsf{t}_2\} } } \; \text{E-Map-Prod}$

Principle (Generic Mapping)

Question

Derive the evaluation rules E-Iter-BoolList and E-Iter-Nat from these more general rules.

Examples of Iteration for Inductive Types


```
NatList = ind(X. <nil:Unit, cons:{Nat,X}>);
sumlist = λl:NatList. iter [NatList] l
                               with x case x of
                                           \langle ni1=u \rangle \Rightarrow 0
                                         | \langle cons = p \rangle \Rightarrow plus p.1 p.2;
▶ sumlist : NatList → Nat
append = \lambdal1:NatList. \lambdal2:NatList.
             iter [NatList] 11
                with x. case x of
                            \langle nil=u \rangle \Rightarrow 12
                          | <cons=p> ⇒ fold [NatList] <cons={p.1,p.2}>;
▶ append : NatList → NatList → NatList
```

Revisiting Streams

Streams

A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.

```
Stream = \mu A. Unit\rightarrow \{Nat, A\};
```

```
upfrom0 = fix (\lambdaf:Nat\rightarrowStream. \lambdan:Nat. fold [Stream] (\lambda_:Unit. {n,f (succ n)})) 0; 
 \blacktriangleright upfrom0 : Stream
```

Observation

A stream is isomorphic to an **infinite** list.

Consider the solution $[\![X]\!]$ to the equation $X = \text{Nat} \times X$. It should satisfy:

$$[\![X]\!] \cong \big\{ \text{inr}\, \{\nu_1, \nu_2\} \,|\, \nu_1 \in [\![\mathsf{Nat}]\!], \nu_2 \in [\![X]\!] \big\}$$

The **least** solution is just the empty set.

But the **greatest** solution is $\{inr \{v_1, inr \{v_2, inr \{v_3, \ldots\}\}\} \mid v_1, v_2, v_3, \ldots \in [\![Nat]\!]\}$, i.e., the streams!

Well-Founded Recursion for Coinductive Types

Question

What is the difference between the recursion schemes on inductive and coinductive types?

Observation

- For inductive types (e.g., lists), we use recursion to iterate over them.
- For coinductive types (e.g., streams), we use recursion to generate them.

Question

Recall the implementation of streams under general recursive types:

```
Stream = \muA. Unit\rightarrow{Nat,A}; upfrom0 = fix (\lambdaf:Nat\rightarrowStream. \lambdan:Nat. fold [Stream] (\lambda_:Unit. {n,f (succ n)})) 0; \blacktriangleright upfrom0 : Stream
```

Can we define a recursion scheme for generating values of coinductive types?

A Generation Operator for Streams

Remark (Specialized Elimination Form)

Let us consider the type of streams as the greatest solution to $X = \text{Nat} \times X$.

$$\frac{\Gamma \vdash \mathbf{t}_1 : \mathsf{Stream}}{\Gamma \vdash \mathsf{unfold} \; [\mathsf{Stream}] \; \mathbf{t}_1 : \mathsf{Nat} \times \mathsf{Stream}} \; \mathsf{T\text{-}Unfold\text{-}Stream}$$

Principle (Structural Recursion for Generation)

```
\frac{\Gamma \vdash t_1 : \textbf{S} \qquad \Gamma, x : \textbf{S} \vdash t_2 : \textbf{Nat} \times \textbf{S}}{\Gamma \vdash \textbf{gen} \; [\textbf{Stream}] \; t_1 \; \textbf{with} \; x.t_2 : \textbf{Stream}} \; \textbf{T-Gen-Stream}} \\ \frac{}{\text{unfold} \; [\textbf{Stream}] \; (\textbf{gen} \; [\textbf{Stream}] \; v \; \textbf{with} \; x.t_2)}} \quad \longrightarrow \\ \textbf{let} \; \nu_2 = [x \mapsto \nu]t_2 \; \textbf{in} \; \{\nu_2.1, (\textbf{gen} \; [\textbf{Stream}] \; \nu_2.2 \; \textbf{with} \; x.t_2)\}}
```

A Generation Operator for Streams


```
\frac{\Gamma \vdash t_1 : \textbf{S}}{\Gamma \vdash \textbf{gen} \text{ [Stream] } t_1 \text{ with } x.t_2 : \textbf{Stream}} \text{ T-Gen-Stream}
```

Example

```
 \label{eq:upfrom0} \begin{tabular}{ll} upfrom0 \equiv \begin{tabular}{ll} gen [Stream] 0 with $x$. $\{x$, succ $x$\} \\ fib \equiv \begin{tabular}{ll} gen [Stream] $\{1,1\}$ with $x$. $\{x$.1, $\{x$.2, (plus $x$.1 $x$.2)\}$\} \\ \end{tabular}
```

Question

Write down the evaluation of (unfold [Stream] t_2).1 where:

```
\begin{split} t_2 &\equiv (\text{unfold [Stream] } t_1).2 \\ t_1 &\equiv (\text{unfold [Stream] } t_0).2 \\ t_0 &\equiv (\text{unfold [Stream] fib}).2 \end{split}
```


Question

Can we inline the meaning of Stream (i.e., the greatest solution to $X = \text{Nat} \times X$) into **gen**?

Principle

Let us write **gen** [X. Nat \times X] for **gen** [Stream].

$$\frac{\Gamma \vdash t_1 : S}{\Gamma \vdash \text{gen } [X. \, \text{Nat} \times X]} \frac{\Gamma, x : S \vdash t_2 : \text{Nat} \times S}{\tau \vdash \text{gen } [X. \, \text{Nat} \times X]} \text{ T-Gen-Stream}$$

$$\frac{\Gamma \vdash t_1 : S \qquad \Gamma, x : S \vdash t_2 : [X \mapsto S]T}{\Gamma \vdash \textbf{gen} \ [X. \ T] \ t_1 \ \textbf{with} \ x. \ t_2 : \textbf{coi}(X. \ T)} \ \text{T-Gen}$$

$$\frac{\Gamma \vdash t_1 : S \qquad \Gamma, x : S \vdash t_2 : [X \mapsto S]T}{\Gamma \vdash \text{gen } [X, T] \ t_1 \ \text{with} \ x. \ t_2 : \text{coi}(X, T)} \text{ T-Gen}$$

Principle

Let us write unfold [X. Nat \times X] for unfold [Stream].

$$\frac{\Gamma \vdash t_1 : \texttt{coi}(X.\,\texttt{Nat} \times X)}{\Gamma \vdash \texttt{unfold} \; [X.\,\,\texttt{Nat} \times X] \; t_1 : \texttt{Nat} \times \texttt{coi}(X.\,\,\texttt{Nat} \times X)} \; \text{T-Unfold-Stream}$$

$$\frac{\Gamma \vdash t_1 : \texttt{coi}(X,T)}{\Gamma \vdash \texttt{unfold} \; [X,T] \; t_1 : [X \mapsto \texttt{coi}(X,T)]T} \; \texttt{T-Unfold}$$

Question

What about the evaluation rules for unfolding a **gen**?

$$\frac{\Gamma \vdash t_1 : S \qquad \Gamma, x : S \vdash t_2 : [X \mapsto S]T}{\Gamma \vdash \text{gen } [X. \ T] \ t_1 \ \text{with } x. \ t_2 : \text{coi}(X. \ T)} \text{ T-Gen}}$$

$$\frac{\text{unfold } [X. \ \text{Nat} \times X] \ (\text{gen } [X. \ \text{Nat} \times X] \ \nu \ \text{with } x. t_2)}}{\longrightarrow} \text{ E-Gen-Stream}}$$

$$\frac{\longrightarrow}{\text{let } \nu_2 = [x \mapsto \nu] t_2 \ \text{in} \ \{\nu_2.1, (\text{gen } [X. \ \text{Nat} \times X] \ \nu_2.2 \ \text{with } x. t_2)\}}}$$

Observation

unfold [X,T] (**gen** [X,T] ν **with** x, t_2) should substitute x with ν in t_2 , obtain the result ν_2 , and replace every sub-structure ν_{sub} of ν_2 that corresponds to an occurrence of X in T by **gen** [X,T] ν_{sub} **with** x, t_2 .

Observation

unfold [X. T] (**gen** [X. T] ν **with** x. t_2) should substitute x with ν in t_2 , obtain the result ν_2 , and replace every sub-structure ν_{sub} of ν_2 that corresponds to an occurrence of X in T by **gen** [X. T] ν_{sub} **with** x. t_2 .

Principle

Recall that for any **positive** type operator X. T, the term **map** [X. T] ν **with** y. t replaces every sub-structure ν_{sub} of ν that corresponds to an occurrence of X in T by [$y \mapsto \nu_{sub}$]t.

$$\begin{array}{c} & \\ & \text{unfold } [X.\,T] \; (\text{gen } [X.\,T] \; \nu \; \text{with } x.\,t_2) \\ & \longrightarrow \\ & \text{map } [X.\,T] \; [x \mapsto \nu]t_2 \; \text{with } y. \; (\text{gen } [X.\,T] \; y \; \text{with } x.\,t_2) \end{array}$$

Question

Derive the evaluation rule E-Gen-Stream from this more general rule.

Formulation of Inductive/Coinductive Types

Syntactic Forms

```
\begin{array}{l} t := \dots \mid \text{fold } [X.\,T] \; t \; | \; \textbf{iter } [X.\,T] \; t \; \textbf{with } x. \; t \mid \text{unfold } [X.\,T] \; t \mid \textbf{gen } [X.\,T] \; t \; \textbf{with } x. \; t_2 \\ v := \dots \mid \text{fold } [X.\,T] \; v \mid \textbf{gen } [X.\,T] \; v \; \textbf{with } x. \; t \\ T := \dots \mid X \mid \text{ind}(X.\,T) \mid \text{coi}(X.\,T) & \text{where } X.\,T \; \text{pos} \end{array}
```

Remark

Inductive types are characterized by how to **construct** them (i.e., **fold**). Coinductive types are characterized by how to **destruct** them (i.e., **unfold**).

Aside

Read more about inductive & coinductive types: N. P. Mendler. 1987. Recursive Types and Type Constraints in Second-Order Lambda Calculus. In *Logic in Computer Science* (LICS'87), 30–36.

Revisiting General Recursive Types

Solving the Type Equation

```
Let [\![T]\!] be the set of values of type T. e.g., [\![Unit]\!] = \{unit\}, [\![Bool]\!] = \{true, false\}. Consider BoolList. The solution [\![X]\!] to the equation X = Unit + Bool \times X should satisfy: [\![X]\!] \cong \{inl\ unit\} \cup \{inr\ \{v_1, v_2\} \mid v_1 \in [\![Bool]\!], v_2 \in [\![X]\!]\}
```

Question

Does the definition mean least or greatest solution?

Principle (Types are NOT Sets)

For example, arrow types characterize **computable** functions, not **arbitrary** functions.

Otherwise, the equation $X = X \to X$ (with the understanding of **partial** functions) does not have a solution. Formal (and unique) characterization of recursive types requires **domain theory**: S. Abramsky and A. Jung. 1995. Domain Theory. In *Handbook of Logic in Computer Science (Vol. 3): Semantic Structures*. Oxford University Press, Inc. https://dl.acm.org/doi/10.5555/218742.218744.

Revisiting General Recursive Types

Eager Semantics

$$\begin{split} t &\coloneqq \ldots \mid \text{fold} \; [X. \, T] \; t \mid \text{unfold} \; [X. \, T] \; t \\ & \qquad \nu \coloneqq \ldots \mid \text{fold} \; [X. \, T] \; \nu \\ & \qquad \qquad T \coloneqq \ldots \mid X \mid \mu X. \; T \\ & \qquad \qquad \frac{t_1 \; \longrightarrow \; t_1'}{\text{fold} \; [X. \, T] \; t_1 \; \longrightarrow \; \text{fold} \; [X. \, T] \; t_1'} \; \text{E-Fold} \end{split}$$

Recursive types have an **inductive** flavor under eager semantics. Coinductive analogues are accessible as well by using function types.

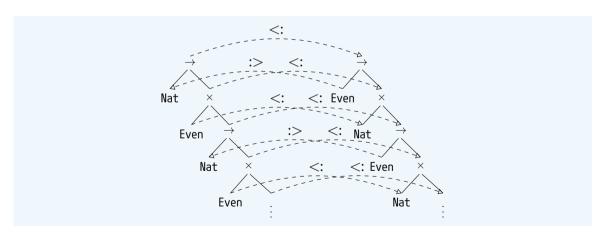
Lazy Semantics

Recursive types have a **coinductive** flavor under lazy semantics. However, the inductive analogues are inaccessible.

Subtyping

Can we deduce the relation below, given that Even <: Nat?

$$\mu X$$
. Nat \rightarrow (Even \times X) $<: \mu X$. Even \rightarrow (Nat \times X)



Review: Subtyping in Chapters 15 & 16

For brevity, we only consider three type constructors: \rightarrow , \times , and Top.

$$T ::= Top \mid T \to T \mid T \times T$$

Declarative Version

Algorithmic Version

$$\frac{}{\rhd\mathsf{T}<:\mathsf{Top}} \qquad \qquad \frac{\rhd\mathsf{T}_1<:\mathsf{S}_1 \qquad \rhd\mathsf{S}_2<:\mathsf{T}_2}{\rhd\mathsf{S}_1\to\mathsf{S}_2<:\mathsf{T}_1\to\mathsf{T}_2} \qquad \qquad \frac{\rhd\mathsf{S}_1<:\mathsf{T}_1 \qquad \rhd\mathsf{S}_2<:\mathsf{T}_2}{\rhd\mathsf{S}_1\times\mathsf{S}_2<:\mathsf{T}_1\times\mathsf{T}_2}$$

μ**-Types**

Definition

Let X range over a fixed countable set $\{X_1, X_2, \ldots\}$ of type variables. The set of **raw** μ **-types** is the set of expressions defined by the following grammar (inductively):

$$T := X \mid \mathsf{Top} \mid \mathsf{T} \to \mathsf{T} \mid \mathsf{T} \times \mathsf{T} \mid \mu \mathsf{X}. \mathsf{T}$$

Definition

A raw μ -type T is **contractive** (and called a μ -type) if, for any subexpression of T of the form μX_1 . μX_2 μX_n . S, the body S is not X.

Question

How to extend the subtype relation to support μ -types?

Subtyping on μ -Types

An Attempt: μ-Folding Rules

$$\frac{S <: [X \mapsto \mu X. T]T}{S <: \mu X. T}$$

$$\frac{[X \mapsto \mu X.\,S]S <: T}{\mu X.\,S <: T}$$

Question

Do those rules work?

Try those rules to check if $\mu X.$ Top \times X <: $\mu X.$ Top \times (Top \times X) holds.

Subtyping on μ -Types

Example

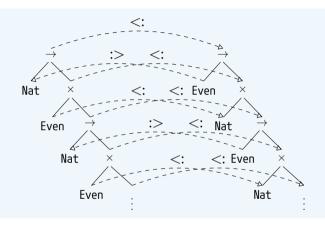
Let $S \equiv \mu X$. Top \times X and T $\equiv \mu X$. Top \times (Top \times X).

$$\frac{\frac{\vdots}{\mathsf{Top} <: \mathsf{Top}} \quad \frac{\vdots}{\mathsf{S} <: \mathsf{T}}}{\frac{\mathsf{Top} \times \mathsf{S} <: \mathsf{Top} \times \mathsf{T}}{\mathsf{S} <: \mathsf{Top} \times \mathsf{T}}}$$

$$\frac{\mathsf{Top} \times \mathsf{S} <: \mathsf{Top} \times \mathsf{S}}{\frac{\mathsf{Top} \times \mathsf{S} <: \mathsf{T}}{\mathsf{S} <: \mathsf{T}}}$$

Observation

The inference works only if we consider the subtyping rules **coinductively**, i.e., consider the **largest** relation generating by the subtyping rules.



Principle

The subtype relation must consider types with structures like infinite trees.

Hypothetical Subtyping

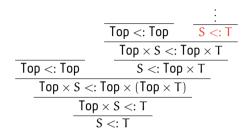
 $\Sigma \vdash S <: T$: "one can derive S <: T by assuming the subtype facts in Σ "

$$\frac{(S <: T) \in \Sigma}{\Sigma \vdash S <: T} \qquad \frac{\Sigma \vdash T_1 <: S_1 \qquad \Sigma \vdash S_2 <: T_2}{\Sigma \vdash S_1 \rightarrow S_2 <: T_1 \rightarrow T_2} \qquad \frac{\Sigma \vdash S_1 <: T_1 \qquad \Sigma \vdash S_2 <: T_2}{\Sigma \vdash S_1 \times S_2 <: T_1 \times T_2}$$

$$\frac{\Sigma, S <: \mu X. T \vdash S <: [X \mapsto \mu X. T]T}{\Sigma \vdash S <: \mu X. T} \qquad \frac{\Sigma, \mu X. S <: T \vdash [X \mapsto \mu X. S]S <: T}{\Sigma \vdash \mu X. S <: T}$$

Let
$$S \equiv \mu X$$
. Top $\times X$ and $T \equiv \mu X$. Top \times (Top $\times X$).

Why Does Hypothetical Subtyping Work?



Observation (Termination)

To check the original subtype relation S <: T between μ -types, the set of reachable states S' <: T' is **finite**. See Chapter 21.9 for a detailed argument.

Question (Correctness)

Why is hypothetical subtyping correct with respect to the original (coinductive) subtype relation?

Coinductive Subtyping

Definition (Generating Functions)

A generating function is a function $F : \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U})$ that is **monotone**, i.e., $X \subseteq Y$ implies $F(X) \subseteq F(Y)$. Let F be monotone. A subset X of \mathcal{U} is a **fixed point** of F if F(X) = X.

The **least** fixed point is written μF . The **greatest** fixed point is written νF .¹

Subtype Relation

Let \mathcal{T}_m denote the set of all μ -types. Two μ -types S and T are said to be in the **subtype relation** ("S is a subtype of T") if $(S,T) \in {}_{}^{\mathbf{v}} F_{\mathbf{d}}$, where the monotone function $F_{\mathbf{d}} : \mathcal{P}(\mathcal{T}_m \times \mathcal{T}_m) \to \mathcal{P}(\mathcal{T}_m \times \mathcal{T}_m)$ is defined as follows:

$$\begin{split} F_d(R) &\equiv \{ (\mathsf{T},\mathsf{Top}) \mid \mathsf{T} \in \mathfrak{T}_{\mathfrak{m}} \} \\ & \cup \{ (S_1 \to S_2,\mathsf{T}_1 \to \mathsf{T}_2) \mid (\mathsf{T}_1,S_1), (S_2,\mathsf{T}_2) \in \mathsf{R} \} \\ & \cup \{ (S_1 \times S_2,\mathsf{T}_1 \times \mathsf{T}_2) \mid (S_1,\mathsf{T}_1), (S_2,\mathsf{T}_2) \in \mathsf{R} \} \\ & \cup \{ (S,\mu\mathsf{X}.\,\mathsf{T}) \mid (S,[\mathsf{X} \mapsto \mu\mathsf{X}.\,\mathsf{T}]\mathsf{T}) \in \mathsf{R} \} \cup \{ (\mu\mathsf{X}.\,\mathsf{S},\mathsf{T}) \mid ([\mathsf{X} \mapsto \mu\mathsf{X}.\,\mathsf{S}]\mathsf{S},\mathsf{T}) \in \mathsf{R} \} \end{split}$$

¹Their existence and uniqueness can be justified by the Knaster-Tarski Theorem.

Correctness of Hypothetical Subtyping

Lemma

Suppose $\Sigma \vdash S <: T$ and each S' <: T' in Σ satisfies $(S', T') \in \nu F_d$. Then $(S, T) \in \nu F_d$.

Proof Sketch

By induction on the derivation of $\Sigma \vdash S \mathrel{<:} \mathsf{T}.$

For μ -folding rules, we need the fact that νF_d is the greatest fixed point of F_d .

Lemma

Suppose $(S, T) \in \nu F_d$. Then $\varnothing \vdash S <: T$.

Proposition

Suppose $\Sigma \vdash S <: T$ does **NOT** hold and each S' <: T' in Σ satisfies $(S', T') \in \nu F_d$. Then $(S, T) \not\in \nu F_d$.

Algorithmic Hypothetical Subtyping

 $\Sigma \vdash S <: T \rhd \top / \bot$: "one can/cannot derive S <: T by assuming the subtype facts in Σ "

$$\begin{array}{lll} (S <: T) \in \Sigma & (S_1 \to S_2, T_1 \to T_2) \not \in \Sigma \\ \hline \Sigma \vdash S <: T \rhd \top & \overline{\Sigma} \vdash T <: Top \rhd \top & \underline{\Sigma} \vdash T_1 <: S_1 \rhd \top & \underline{\Sigma} \vdash S_2 <: T_2 \rhd \top \\ \hline (S_1 \to S_2, T_1 \to T_2) \not \in \Sigma & \underline{\Sigma} \vdash T_1 <: S_1 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \top \\ \hline (S_1 \to S_2, T_1 \to T_2) \not \in \Sigma & (S_1 \to S_2, T_1 \to T_2) \not \in \Sigma & \underline{\Sigma} \vdash T_1 <: S_1 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot \\ \hline (S, \mu X. T) \not \in \Sigma & \underline{\Sigma} \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \rhd \bot & \underline{\Sigma} \vdash S_1 \to S_2 <: T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \hline \Sigma \vdash S_1 \to S_2 <: T_1 \to T_2 \to \bot \\ \to T_1 \to T_1 \to T_2 \to \bot \\ \to T_1 \to T_1 \to T_2 \to \bot \\ \to T_1 \to T_1 \to T_2 \to \bot \\ \to T_1 \to T_1 \to T_2 \to \bot \to T_1 \to T_2 \to \bot \\ \to T_1 \to T_1 \to T_2 \to \bot \to T_1 \to T_1 \to T_2 \to \bot \to T_1 \to T_2 \to \bot \to T_1$$

Otherwise, we have $\Sigma \vdash S \mathrel{<:} T \rhd \bot$.

Proposition

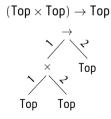
Suppose $\Sigma \vdash S \mathrel{<:} T \mathrel{\triangleright} \bot$ and each $S' \mathrel{<:} T'$ in Σ satisfies $(S', T') \in \nu F_d$. Then $(S, T) \not\in \nu F_d$.

Aside: Why is Coinductive Subtyping Indeed Correct?

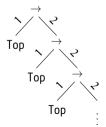
Definition

A **tree type** is a partial function $T: \{1, 2\}^* \longrightarrow \{\rightarrow, \times, \mathsf{Top}\}$ satisfying the following constraints:

- T(•) is defined;
- if $T(\pi, \sigma)$ is defined then $T(\pi)$ is defined;
- if $T(\pi) = \rightarrow$ or $T(\pi) = \times$ then $T(\pi, 1)$ and $T(\pi, 2)$ are defined;
- if $T(\pi) = \text{Top then } T(\pi, 1)$ and $T(\pi, 2)$ are undefined.



$$\mathsf{Top} \to (\mathsf{Top} \to (\mathsf{Top} \to \ldots))$$



Aside: Why is Coinductive Subtyping Indeed Correct?

Subtype Relation

Let $\mathfrak T$ denote the set of all tree types. Two tree types S and T are said to be in the **subtype relation** ("S is a subtype of T") if $(S,T) \in \mathbf VF$, where the monotone function $F: \mathfrak P(\mathfrak T \times \mathfrak T) \to \mathfrak P(\mathfrak T \times \mathfrak T)$ is defined as follows:

$$\begin{split} F(R) &\equiv \{ (\mathsf{T},\mathsf{Top}) \mid \mathsf{T} \in \mathfrak{I} \} \\ & \cup \{ (S_1 \to S_2,\mathsf{T}_1 \to \mathsf{T}_2) \mid (\mathsf{T}_1,S_1), (S_2,\mathsf{T}_2) \in \mathsf{R} \} \\ & \cup \{ (S_1 \times S_2,\mathsf{T}_1 \times \mathsf{T}_2) \mid (S_1,\mathsf{T}_1), (S_2,\mathsf{T}_2) \in \mathsf{R} \} \end{split}$$

Principle

Under an equi-recursive setting, the subtype relation vF on possibly-infinite tree types is the desired relation.

Interpreting μ -Types as Possibly-Infinite Tree Types

The function treeof, mapping closed μ -types to tree types, is defined inductively as follows:

$$\begin{split} \textit{treeof}(\mathsf{Top})(\bullet) &\equiv \mathsf{Top} \\ \textit{treeof}(\mathsf{T}_1 \to \mathsf{T}_2)(\bullet) &\equiv \to \\ \textit{treeof}(\mathsf{T}_1 \times \mathsf{T}_2)(\bullet) &\equiv \times \\ \textit{treeof}(\mu\mathsf{X}.\,\mathsf{T})(\pi) &\equiv \textit{treeof}([\mathsf{X} \mapsto \mu\mathsf{X}.\,\mathsf{T}]\mathsf{T})(\pi) \end{split}$$

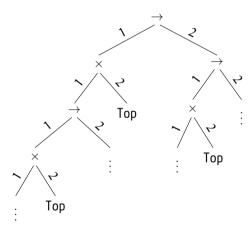
Question

Why is *treeof* well-defined?

Answer

Every recursive use of *treeof* on the right-hand side reduces the lexicographic size of the pair ($|\pi|$, μ -height(T)), where μ -height(T) is the number of of μ -bindings at the front of T.

$\textit{treeof}(\mu X.\left((X \times \mathsf{Top}) \to X)\right)$



Aside: Why is Coinductive Subtyping Indeed Correct?

Subtype Relation

Let $\mathcal T$ denote the set of all tree types. Two tree types S and T are said to be in the **subtype relation** ("S is a subtype of T") if $(S,T) \in \mathbf VF$, where the monotone function $F: \mathcal P(\mathcal T \times \mathcal T) \to \mathcal P(\mathcal T \times \mathcal T)$ is defined as follows:

$$\begin{split} F(R) &\equiv \{ (\mathsf{T},\mathsf{Top}) \mid \mathsf{T} \in \mathfrak{I} \} \\ & \cup \{ (S_1 \to S_2,\mathsf{T}_1 \to \mathsf{T}_2) \mid (\mathsf{T}_1,S_1), (S_2,\mathsf{T}_2) \in \mathsf{R} \} \\ & \cup \{ (S_1 \times S_2,\mathsf{T}_1 \times \mathsf{T}_2) \mid (S_1,\mathsf{T}_1), (S_2,\mathsf{T}_2) \in \mathsf{R} \} \end{split}$$

Theorem

Recall that F_d is the generating function for the subtype relation on μ -types.

Let $(S,T) \in \mathfrak{T}_m \times \mathfrak{T}_m$. Then $(S,T) \in \nu F_d$ if and only if $(\textit{treeof}(S), \textit{treeof}(T)) \in \nu F$.

Homework

Question

- Implement Y_T (shown on Slide 23) in OCaml/MoonBit. Does it really work as a fixed-point operator? Why?
- How to make it work? Show your solution is effective by using it to define three recursive functions.
- Formulate your solution with explicit fold's and unfold's. You may check your solution using the fullisorec checker.