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Recursive Types
递归类型
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Review: Lists Defined in Chapter 11
List T describes finite-length lists whose elements are of type T .

Syntactic Forms

t ::= . . . | nil[T ] | cons[T ] t t | isnil[T ] t | head[T ] t | tail[T ] t
v ::= . . . | nil[T ] | cons[T ] v v

T ::= . . . | List T

Typing Rules

Γ ` nil[T1] : List T1
T-Nil

Γ ` t1 : T1 Γ ` t2 : List T1

Γ ` cons[T1] t1 t2 : List T1
T-Cons

Γ ` t1 : List T11

Γ ` isnil[T11] t1 : Bool T-IsNil
Γ ` t1 : List T11

Γ ` head[T11] t1 : T11
T-Head

Γ ` t1 : List T11

Γ ` tail[T11] t1 : List T11
T-Tail
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BoolList: A Specialized Version
BoolList describes finite-length lists whose elements are of Booleans.

Syntactic Forms

t ::= . . . | nil | cons t t | isnil t | head t | tail t

v ::= . . . | nil | cons v v

T ::= . . . | BoolList

Typing Rules

Γ ` nil : BoolList T-Nil
Γ ` t1 : Bool Γ ` t2 : BoolList

Γ ` cons t1 t2 : BoolList T-Cons

Γ ` t1 : BoolList
Γ ` isnil t1 : Bool T-IsNil

Γ ` t1 : BoolList
Γ ` head t1 : Bool T-Head

Γ ` t1 : BoolList
Γ ` tail t1 : BoolList T-Tail
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Review: Natural Numbers Defined in Chapter 8
Nat describes natural numbers.

Syntactic Forms

t ::= . . . | 0 | succ t | iszero t | pred t

v ::= . . . | 0 | succ v

T ::= . . . | Nat

Typing Rules

Γ ` 0 : Nat T-Zero
Γ ` t1 : Nat

Γ ` succ t1 : Nat T-Succ

Γ ` t1 : Nat
Γ ` iszero t1 : Bool T-IsZero

Γ ` t1 : Nat
Γ ` pred t1 : Nat T-Pred
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Similarity between Lists and Natural Numbers
Question
Do you notice that the structures and rules for lists and natural numbers are very similar?

Introduction Forms
Terms that introduce (or construct) values of a certain type.

• Boolean lists: nil and cons t t

• Natural numbers: 0 and succ t

Elimination Forms
Terms that eliminate (or destruct) values of a certain type.
They tell us how to use those values.

• Boolean lists: isnil t, head t, and tail t

• Natural numbers: iszero t and pred t
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Unifying Introduction Forms for A Type
It would be useful to unify multiple introduction forms into a single one.

Boolean Lists
A Boolean list is either (i) an empty list nil, or (ii) a cons list of a Boolean and a Boolean list.

Γ ` t1 : Unit+ Bool× BoolList
Γ ` fold [BoolList] t1 : BoolList T-Fold-BoolList

We use sum types to unify multiple possibilities.
That is, Unit stands for case i and Bool× BoolList stands for case ii.

Remark (Sum Types)

Γ ` t1 : T1

Γ ` inl t1 : T1 + T2
T-Inl

Γ ` t1 : T2

Γ ` inr t1 : T1 + T2
T-Inr

Γ ` t0 : T1 + T2 Γ , x1 : T1 ` t1 : T Γ , x2 : T2 ` t2 : T

Γ ` case t0 of inl x1 ⇒ t1 | inr x2 ⇒ t2 : T
T-Case
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Unifying Introduction Forms for A Type
Natural Numbers
A natural number is either (i) zero 0, or (ii) a succ of a natural number.

Γ ` t1 : Unit+ Nat
Γ ` fold [Nat] t1 : Nat T-Fold-Nat

Similarly, Unit stands for case i and Nat stands for case ii.

Example

0 ≡ fold [Nat] (inl unit)
succ t ≡ fold [Nat] (inr t)

nil ≡ fold [BoolList] (inl unit)
cons t1 t2 ≡ fold [BoolList] (inr {t1, t2})
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Generalizing the fold Operator
Question
Can we inline the meaning of BoolList into fold?

Recursion Operator µ
We can think of BoolList as a type satisfying the equation BoolList = Unit+ Bool× BoolList.
Abstractly, it is a solution to the equation X = Unit+ Bool×X. Let us denote it by µX. Unit+ Bool×X.

Principle
Let us write fold [X. Unit+ Bool×X] for fold [BoolList].

Γ ` t1 : Unit+ Bool× (µX. Unit+ Bool×X)

Γ ` fold [X. Unit+ Bool×X] t1 : µX. Unit+ Bool×X
T-Fold-BoolList

Γ ` t1 : [X 7→ µX. T ]T
Γ ` fold [X. T ] t1 : µX. T

T-Fold
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Generalizing the fold Operator
Γ ` t1 : [X 7→ µX. T ]T

Γ ` fold [X. T ] t1 : µX. T
T-Fold

Example (Boolean Lists)

BoolList ≡ µX. Unit+ Bool×X

nil ≡ fold [X. Unit+ Bool×X] (inl unit)
cons t1 t2 ≡ fold [X. Unit+ Bool×X] (inr {t1, t2})

Example (Natural Numbers)

Nat ≡ µX. Unit+X

0 ≡ fold [X. Unit+X] (inl unit)
succ t ≡ fold [X. Unit+X] (inr t)
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Recursive Types
The types we worked on so far (e.g., BoolList and Nat) are recursive types.

Observation
Every value of a recursive type is the folding of a value of the unfolding of the recursive type.

Γ ` t1 : [X 7→ µX. T ]T
Γ ` fold [X. T ] t1 : µX. T

T-Fold

Solving the Type Equation
Let JTK be the set of values of type T , e.g., JUnitK = {unit}, JBoolK = {true, false}.
Consider BoolList. The solution JXK to the equation X = Unit+ Bool×X should satisfy:JXK ∼=

{
inl unit

}
∪
{
inr {v1, v2} | v1 ∈ JBoolK, v2 ∈ JXK}

Principle
Recursive types denote the solutions to type equations.
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Unifying Elimination Forms for A Type
Remark
Recall that elimination forms destruct values of a certain type.

Observation
For the type µX. T , the operator fold [X. T ] can be thought of as a function with type [X 7→ µX. T ]T → µX. T .

• Boolean lists: fold [X. Unit+ Bool×X] : Unit+ Bool× BoolList → BoolList
• Natural numbers: fold [X. Unit+X] : Unit+ Nat → Nat

Principle
Elimination forms are the inverse of introduction forms.

• Boolean lists: the elimination form has type BoolList → Unit+ Bool× BoolList.
• Natural numbers: the elimination form has type Nat → Unit+ Nat

In general, the elimination forms have type µX. T → [X 7→ µX. T ]T .
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Unifying Elimination Forms for A Type
Principle
For the type µX. T , its elimination form has type µX. T → [X 7→ µX. T ]T .

Γ ` t1 : [X 7→ µX. T ]T
Γ ` fold [X. T ] t1 : µX. T

T-Fold
Γ ` t1 : µX. T

Γ ` unfold [X. T ] t1 : [X 7→ µX. T ]T
T-Unfold

Example (Boolean Lists)

Γ ` t1 : BoolList
Γ ` unfold [X. Unit+ Bool×X] t1 : Unit+ Bool× BoolList T-Unfold-BoolList

isnil t ≡ case unfold [X. Unit+ Bool×X] t of inl x1 ⇒ true | inr x2 ⇒ false
head t ≡ case unfold [X. Unit+ Bool×X] t of inl x1 ⇒ error | inr x2 ⇒ x2.1
tail t ≡ case unfold [X. Unit+ Bool×X] t of inl x1 ⇒ error | inr x2 ⇒ x2.2
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Unifying Elimination Forms for A Type
Principle
For the type µX. T , its elimination form has type µX. T → [X 7→ µX. T ]T .

Γ ` t1 : [X 7→ µX. T ]T
Γ ` fold [X. T ] t1 : µX. T

T-Fold
Γ ` t1 : µX. T

Γ ` unfold [X. T ] t1 : [X 7→ µX. T ]T
T-Unfold

Example (Natural Numbers)

Γ ` t1 : Nat
Γ ` unfold [X. Unit+X] t1 : Unit+ Nat T-Unfold-Nat

iszero t ≡ case unfold [X. Unit+X] t of inl x1 ⇒ true | inr x2 ⇒ false
pred t ≡ case unfold [X. Unit+X] t of inl x1 ⇒ 0 | inr x2 ⇒ x2
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The Iso-Recursive Approach

µX. T [X 7→ µX. T ]T

unfold[X. T ]

fold[X. T ]
• [X 7→ µX. T ]T is the one-step unfolding of µX. T .
• The pair of functions unfold[X. T ] and fold[X. T ] are witness functions for isomorphism.

Question
Use the iso-recursive approach to formulate a type for binary trees containing a Boolean in each internal node.

Question
OCaml/MoonBit uses iso-recursive types (by default). Where are the fold’s and unfold’s?
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Examples of Recursive Types

Remark
We have studied tuples and variants.

• Tuples: {Tii∈1...n}
• Variants: <li : Tii∈1...n>

Example
Let us revisit Boolean lists and natural numbers.

BoolList ≡ µX. <nil : Unit, cons : {Bool,X}>
Nat ≡ µX. <zero : Unit, succ : X>
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Lists with Natural-Number Elements
NatList = µX. <nil:Unit, cons:{Nat,X}>;

nil = fold [NatList] <nil=unit>;
▶ nil : NatList
cons = λ n:Nat. λ l:NatList. fold [NatList] <cons={n,l}>;
▶ cons : Nat → NatList → NatList

isnil = λ l:NatList. case unfold [NatList] l of <nil=u> ⇒ true | <cons=p> ⇒ false;
▶ isnil : NatList → Bool
head = λ l:NatList. case unfold [NatList] l of <nil=u> ⇒ error | <cons=p> ⇒ p.1;
▶ head : NatList → Nat
tail = λ l:NatList. case unfold [NatList] l of <nil=u> ⇒ error | <cons=p> ⇒ p.2;
▶ tail : NatList → NatList

sumlist = fix (λ s:NatList→Nat. λ l:NatList.
if isnil l then 0 else plus (head l) (s (tail l)));

▶ sumlist : NatList → Nat
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Hungry Functions
Hungry Functions
A hungry function accepts any number of arguments and always return a new function that is hungry for more.

Hungry = µA. Nat→A;

f = fix (λ f:Nat→Hungry. λ n:Nat. fold [Hungry] f);
▶ f : Nat→Hungry

f 0;
▶ fold [Hungry] <fun> : Hungry

unfold [Hungry] (f 0);
▶ <fun> : Nat→Hungry

unfold [Hungry] (unfold [Hungry] (f 0) 1) 2;
▶ fold [Hungry] <fun> : Hungry
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Streams
Streams
A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.

Stream = µA. Unit→{Nat,A};

head = λ s:Stream. (unfold [Stream] s unit).1;
▶ head : Stream → Nat
tail = λ s:Stream. (unfold [Stream] s unit).2;
▶ tail : Stream → Stream

upfrom0 = fix (λ f:Nat→Stream. λ n:Nat. fold [Stream] (λ _:Unit. {n,f (succ n)})) 0;
▶ upfrom0 : Stream

Question
Define a stream that yields successive elements of the Fibonacci sequence (1, 1, 2, 3, 5, 8, 13, . . .).

Design Principles of Programming Languages, Spring 2025 19



Streams
fib = fix (λ f:Nat→Nat→Stream. λ a:Nat. λ b:Nat.

fold [Stream] (λ _:Unit. {a,f b (plus a b)})) 1 1;
▶ fib : Stream;

head fib;
▶ 1 : Nat
head (tail (tail (tail fib)));
▶ 3 : Nat
head (tail (tail (tail (tail (tail (tail fib))))));
▶ 13 : Nat

Processes
A process accepts a value and returns a value and a new process.

Process = µA. Nat→{Nat,A}
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Objects
Purely Functional Objects
An object accepts a message and returns a response to that message and a new object if mutated.

Counter = µC. {get:Nat, inc:Unit→C, dec:Unit→C};

c1 = let create = fix (λ f:{x:Nat}→Counter. λ s:{x:Nat}.
fold [Counter]
{get = s.x,
inc = λ _:Unit. f {x=succ(s.x)},
dec = λ _:Unit. f {x=pred(s.x)} })

in create {x=0};
▶ c1 : Counter

c2 = (unfold [Counter] c1).inc unit;
▶ c2 : Counter
(unfold [Counter] c2).get;
▶ 1 : Nat

Design Principles of Programming Languages, Spring 2025 21



Divergence
Remark
Recall omega from untyped lambda-calculus:

omega = (λ x. x x) (λ x. x x)
We have omega −→ omega −→ omega −→ . . ., i.e., omega diverges.

Suppose we want to type x : Tx ` x x : T for a given T . We obtain a type equation:

Tx = Tx → T

Thus Tx can be defined as µA.A → T .

Well-Typed Divergence
DivT = µA. A→T;
omegaT = (λ x:DivT. unfold [DivT] x x) (fold [DivT] (λ x:DivT. unfold [DivT] x x));
▶ omegaT : T

Recursive types break the strong-normalization property (c.f., Chapter 12)without using fixed points!
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Recursion
Remark
Recall the Y operator from untyped lambda-calculus:

Y = λ f. (λ x. f (x x)) (λ x. f (x x))
For any f, the operator satisfies Y f −→∗ f ((λx.f (x x)) (λx.f (x x))) =β f (Y f).

Question
Can we give Y a type using recursive types?

YT = λ f:T→T.
(λ x:DivT. f (unfold [DivT] x x)) (fold [DivT] (λ x:DivT. f (unfold [DivT] x x)));

▶ YT : (T→T) → T

Question (Homework)
Implement YT in OCaml/MoonBit. Does it really work as a fixed-point operator? Why? How to make it work?
Show your solution is effective by using it to define three recursive functions.
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Untyped Lambda-Calculus
We can embed the whole untyped lambda-calculus into a statically typed language with recursive types.

D = µX. X→X;

lam = λ f:D→D. fold [D] f;
▶ lam : (D→D) → D

ap = λ f:D. λ a:D. unfold [D] f a;
▶ ap : D → D → D

LetM be a closed untyped lambda-term. We can embedM, writtenM⋆, as an element of D.
x⋆ = x

(λx.M)⋆ = lam (λx:D.M⋆)

(MN)⋆ = apM⋆ N⋆
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Formulation of Iso-Recursive Types (λµ)

Syntactic Forms

t ::= . . . | fold [X. T ] t | unfold [X. T ] t v ::= . . . | fold [X. T ] v T ::= . . . | X | µX. T

Typing and Evaluation Rules

Γ ` t1 : [X 7→ µX. T1]T1
Γ ` fold [X. T1] t1 : µX. T1

T-Fold
Γ ` t1 : µX. T1

Γ ` unfold [X. T1] t1 : [X 7→ µX. T1]T1
T-Unfold

unfold [X.S] (fold [Y. T ] v1) −→ v1
E-UnfoldFold

t1 −→ t ′1
fold [X. T ] t1 −→ fold [X. T ] t ′1

E-Fold
t1 −→ t ′1

unfold [X. T ] t1 −→ unfold [X. T ] t ′1
E-Unfold
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Another Approach to Recursive Types
Question
Let us revisit the question: what is the relation between the type µX. T and its one-step unfolding [X 7→ µX. T ]T?

NatList ∼ <nil : Unit, cons : {Nat, NatList}>

NatList as An Infinite Tree
<nil: , cons: >

Unit { , }

Nat <nil: , cons: >

Unit { , }

Nat <nil: , cons: >

Unit · · ·
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Another Approach to Recursive Types
NatList ∼ <nil : Unit, cons : {Nat, NatList}>

The Iso-Recursive Approach

• Take a recursive type and its unfolding as different, but isomorphic.
• This approach is notationally heavier, requiring programs to be decorated with fold and unfold instructions
wherever recursive types are used.

The Equi-Recursive Approach

• Take these two type expressions as definitionally equal—interchangeable in all contexts—because they stand
for the same infinite tree.

• This approach is more intuitive, but places stronger demands on the type-checker.
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Lists under Equi-Recursive Types
NatList = µX. <nil:Unit, cons:{Nat,X}>;

nil = <nil=unit> as NatList;
▶ nil : NatList
cons = λ n:Nat. λ l:NatList. <cons={n,l}> as NatList;
▶ cons : Nat → NatList → NatList

isnil = λ l:NatList. case l of <nil=u> ⇒ true | <cons=p> ⇒ false;
▶ isnil : NatList → Bool
head = λ l:NatList. case l of <nil=u> ⇒ error | <cons=p> ⇒ p.1;
▶ head : NatList → Nat
tail = λ l:NatList. case l of <nil=u> ⇒ error | <cons=p> ⇒ p.2;

Question
Re-implement previous examples of iso-recursive types under equi-recursive types.
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Recursive Types are Useless as Logics
Remark (Curry-Howard Correspondence)
In simply-typed lambda-calculus, we can interpret types as logical propositions (c.f., Chapter 9).

proposition P ⊃ Q type P → Q

proposition P∧Q type P×Q

proposition P∨Q type P+Q

proposition P is provable type P is inhabited
proof of proposition P term t of type P

Observation
Recursive types are so powerful that the strong-normalization property is broken.

omegaT = (λ x:(µA. A→T). x x) (λ x:(µA. A→T). x x);
▶ omegaT : T

The fact that omegaT is well-typed for every Tmeans that every proposition in the logic is provable—that is, the
logic is inconsistent.
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Restricting Recursive Types

Question
Suppose that we are not allowed to use fixed points.
What kinds of recursive types can ensure strong-normalization? What kinds cannot?

Lists µX. <nil : Unit, cons : {Nat,X}> 3
Streams µA. Unit → {Nat,A} 3
Divergence µA.A → Nat 7

Untyped lambda-calculus µX.X → X 7

Observation
It seems problematic for a recursive type to recurse in the contravariant positions.
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Positive Type Operators

X. T pos: “type operator X. T is positive”

X.X pos X. Unit pos
X. T1 pos X. T2 pos

X. T1 × T2 pos
X. T1 pos X. T2 pos

X. T1 + T2 pos

T1 type X. T2 pos
X. T1 → T2 pos

Question
Which of the following type operators are positive?

X. <nil : Unit, cons : {Nat,X}> A. Unit → {Nat,A} A.A → Nat X.X → X
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Inductive & Coinductive Types
Positive type operators can be used to build inductive and coinductive types.

Syntactic Forms

T ::= . . . | X | ind(X. T) | coi(X. T) where X. T pos
t ::= . . . | fold [X. T ] t | unfold [X. T ] t

Remark (Solving the Type Equation)
Let JTK be the set of values of type T , e.g., JUnitK = {unit}, JBoolK = {true, false}.
Consider BoolList. The solution JXK to the equation X = Unit+ Bool×X should satisfy:JXK ∼=

{
inl unit

}
∪
{
inr {v1, v2} | v1 ∈ JBoolK, v2 ∈ JXK}

Principle
Inductive types are the least solutions. For example, the least solution to X = Unit+X is isomorphic toN.
Coinductive types are the greatest solutions.
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Well-Founded Recursion for Inductive Types

Question
How to compute the length of a Boolean list?
Can you do thatwithout using fixed points?

Question
Is there a way to allow useful recursion schemes on Boolean lists, without allowing general fixed points?

Principle (Structural Recursion)
The argument of a recursion function call can only be the sub-structures of the function parameter.

len t = case unfold [X. Unit+ Bool×X] t of inl x1 ⇒ 0 | inr x2 ⇒ succ (len x2.2)
It is just iteration!
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An Iteration Operator for Boolean Lists
Remark (Specialized Introduction Form)

Γ ` t1 : Unit+ Bool× BoolList
Γ ` fold [BoolList] t1 : BoolList T-Fold-BoolList

Principle (Structural Recursion via Iteration)

Γ ` t1 : BoolList Γ , x : Unit+ Bool× S ` t2 : S

Γ ` iter [BoolList] t1 with x. t2 : S
T-Iter-BoolList

iter [BoolList] (fold [BoolList] v) with x. t2 −→ t ′
E-Iter-BoolList

where
t ′ ≡ let x = case v of inl x1 ⇒ inl x1 |

inr x2 ⇒ inr {x2.1, iter [BoolList] x2.2 with x. t2}
in t2
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An Iteration Operator for Boolean Lists
Γ ` t1 : BoolList Γ , x : Unit+ Bool× S ` t2 : S

Γ ` iter [BoolList] t1 with x. t2 : S
T-Iter-BoolList

Example

isnil t ≡ iter [BoolList] t with x. case x of inl x1 ⇒ true | inr x2 ⇒ false
len t ≡ iter [BoolList] t with x. case x of inl x1 ⇒ 0 | inr x2 ⇒ succ x2.2

Question
Write down the evaluation of len ℓ2 where:

ℓ2 ≡ fold [BoolList] (inr {true, ℓ1})
ℓ1 ≡ fold [BoolList] (inr {false, ℓ0})
ℓ0 ≡ fold [BoolList] (inl unit)
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An Iteration Operator for Natural Numbers
Let us repeat the same development for the inductive type of natural numbers.

Γ ` t1 : Unit+ Nat
Γ ` fold [Nat] t1 : Nat T-Fold-Nat

Now consider iteration over natural numbers.
Γ ` t1 : Nat Γ , x : Unit+ S ` t2 : S

Γ ` iter [Nat] t1 with x. t2 : S
T-Iter-Nat

iter [Nat] (fold [Nat] v) with x. t2 −→ t ′
E-Iter-Nat

where
t ′ ≡ let x = case v of inl x1 ⇒ inl x1 |

inr x2 ⇒ inr (iter [Nat] x2 with x. t2)
in t2
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Generalizing the iter Operator

Question
Can we inline the meaning of BoolList into iter?

Principle
Let us write iter [X. Unit+ Bool×X] for iter [BoolList].

Γ ` t1 : ind(X. Unit+ Bool×X) Γ , x : Unit+ Bool× S ` t2 : S

Γ ` iter [X. Unit+ Bool×X] t1 with x. t2 : S
T-Iter-BoolList

Γ ` t1 : ind(X. T) Γ , x : [X 7→ S]T ` t2 : S

Γ ` iter [X. T ] t1 with x. t2 : S
T-Iter
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Generalizing the iter Operator
Γ ` t1 : ind(X. T) Γ , x : [X 7→ S]T ` t2 : S

Γ ` iter [X. T ] t1 with x. t2 : S
T-Iter

Principle
Let us write fold [X. Unit+ Bool×X] for fold [BoolList].

Γ ` t1 : Unit+ Bool× ind(X. Unit+ Bool×X)

Γ ` fold [X. Unit+ Bool×X] t1 : ind(X. Unit+ Bool×X)
T-Fold-BoolList

Γ ` t1 : [X 7→ ind(X. T)]T
Γ ` fold [X. T ] t1 : ind(X. T)

T-Fold

Question
What about the evaluation rules for iter?
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Generalizing the iter Operator

Γ ` t1 : ind(X. T) Γ , x : [X 7→ S]T ` t2 : S

Γ ` iter [X. T ] t1 with x. t2 : S
T-Iter

iter [X. Unit+ Bool×X] (fold [X. Unit+ Bool×X] v) with x. t2 −→ t ′
E-Iter-BoolList

where
t ′ ≡ let x = case v of inl x1 ⇒ inl x1 |

inr x2 ⇒ inr {x2.1, iter [X. Unit+ Bool×X] x2.2 with x. t2}
in t2

Observation
iter [X. T ] (fold [X. T ] v) with x. t2 should replace every sub-structure vsub of v that corresponds to an
occurrence of X in T by iter [X. T ] vsub with x. t2.
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Generalizing the iter Operator
Observation
iter [X. T ] (fold [X. T ] v) with x. t2 should replace every sub-structure vsub of v that corresponds to an
occurrence of X in T by iter [X. T ] vsub with x. t2.

Principle

iter [X. T ] (fold [X. T ] v) with x. t2 −→ [x 7→ map [X. T ] v with y. (iter [X. T ] y with x. t2)]t2
E-Iter

The operator map is defined inductively on the structure of the positive type operator.

map [X.X] v with y. t2 −→ [y 7→ v]t2
E-Map-Var map [X. Unit] v with y. t2 −→ v

E-Map-Unit

map [X. T1 × T2] v with y. t2 −→ {map [X. T1] v.1 with y. t2, map [X. T2] v.2 with y. t2}
E-Map-Prod
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Generalizing the iter Operator
Principle (Generic Mapping)

map [X.X] v with y. t2 −→ [y 7→ v]t2
E-Map-Var map [X. Unit] v with y. t2 −→ v

E-Map-Unit

map [X. T1 × T2] v with y. t2 −→ {map [X. T1] v.1 with y. t2, map [X. T2] v.2 with y. t2}
E-Map-Prod

map [X. T1 + T2] v with y. t2 −→ t ′
E-Map-Sum

where
t ′ ≡ case v of inl x1 ⇒ inl (map [X. T1] x1 with y. t2) |

inr x2 ⇒ inr (map [X. T2] x2 with y. t2)

Question
Derive the evaluation rules E-Iter-BoolList and E-Iter-Nat from these more general rules.
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Examples of Iteration for Inductive Types

NatList = ind(X. <nil:Unit, cons:{Nat,X}>);

sumlist = λ l:NatList. iter [NatList] l
with x. case x of

<nil=u> ⇒ 0
| <cons=p> ⇒ plus p.1 p.2;

▶ sumlist : NatList → Nat

append = λ l1:NatList. λ l2:NatList.
iter [NatList] l1
with x. case x of

<nil=u> ⇒ l2
| <cons=p> ⇒ fold [NatList] <cons={p.1,p.2}>;

▶ append : NatList → NatList → NatList
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Revisiting Streams
Streams
A stream consumes an arbitrary number of unit values, each time returning a pair of a value and a new stream.
Stream = µA. Unit→{Nat,A};

upfrom0 = fix (λ f:Nat→Stream. λ n:Nat. fold [Stream] (λ _:Unit. {n,f (succ n)})) 0;
▶ upfrom0 : Stream

Observation
A stream is isomorphic to an infinite list.
Consider the solution JXK to the equation X = Nat×X. It should satisfy:JXK ∼=

{
inr {v1, v2} | v1 ∈ JNatK, v2 ∈ JXK}

The least solution is just the empty set.
But the greatest solution is

{
inr {v1, inr {v2, inr {v3, . . .}}} | v1, v2, v3, . . . ∈ JNatK}, i.e., the streams!
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Well-Founded Recursion for Coinductive Types
Question
What is the difference between the recursion schemes on inductive and coinductive types?

Observation
• For inductive types (e.g., lists), we use recursion to iterate over them.
• For coinductive types (e.g., streams), we use recursion to generate them.

Question
Recall the implementation of streams under general recursive types:
Stream = µA. Unit→{Nat,A};
upfrom0 = fix (λ f:Nat→Stream. λ n:Nat. fold [Stream] (λ _:Unit. {n,f (succ n)})) 0;
▶ upfrom0 : Stream

Can we define a recursion scheme for generating values of coinductive types?
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A Generation Operator for Streams
Remark (Specialized Elimination Form)
Let us consider the type of streams as the greatest solution to X = Nat×X.

Γ ` t1 : Stream
Γ ` unfold [Stream] t1 : Nat× Stream T-Unfold-Stream

Principle (Structural Recursion for Generation)

Γ ` t1 : S Γ , x : S ` t2 : Nat× S

Γ ` gen [Stream] t1 with x.t2 : Stream T-Gen-Stream

unfold [Stream] (gen [Stream] v with x.t2)
−→

let v2 = [x 7→ v]t2 in {v2.1, (gen [Stream] v2.2 with x.t2)}

E-Gen-Stream
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A Generation Operator for Streams
Γ ` t1 : S Γ , x : S ` t2 : Nat× S

Γ ` gen [Stream] t1 with x.t2 : Stream T-Gen-Stream

Example

upfrom0 ≡ gen [Stream] 0 with x. {x, succ x}
fib ≡ gen [Stream] {1, 1} with x. {x.1, {x.2, (plus x.1 x.2)}}

Question
Write down the evaluation of (unfold [Stream] t2).1 where:

t2 ≡ (unfold [Stream] t1).2
t1 ≡ (unfold [Stream] t0).2
t0 ≡ (unfold [Stream] fib).2

Design Principles of Programming Languages, Spring 2025 46



Generalizing the gen Operator

Question
Can we inline the meaning of Stream (i.e., the greatest solution to X = Nat×X) into gen?

Principle
Let us write gen [X. Nat×X] for gen [Stream].

Γ ` t1 : S Γ , x : S ` t2 : Nat× S

Γ ` gen [X. Nat×X] t1 with x. t2 : coi(X. Nat×X)
T-Gen-Stream

Γ ` t1 : S Γ , x : S ` t2 : [X 7→ S]T

Γ ` gen [X. T ] t1 with x. t2 : coi(X. T)
T-Gen
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Generalizing the gen Operator
Γ ` t1 : S Γ , x : S ` t2 : [X 7→ S]T

Γ ` gen [X. T ] t1 with x. t2 : coi(X. T)
T-Gen

Principle
Let us write unfold [X. Nat×X] for unfold [Stream].

Γ ` t1 : coi(X. Nat×X)

Γ ` unfold [X. Nat×X] t1 : Nat× coi(X. Nat×X)
T-Unfold-Stream

Γ ` t1 : coi(X. T)
Γ ` unfold [X. T ] t1 : [X 7→ coi(X. T)]T

T-Unfold

Question
What about the evaluation rules for unfolding a gen?
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Generalizing the gen Operator

Γ ` t1 : S Γ , x : S ` t2 : [X 7→ S]T

Γ ` gen [X. T ] t1 with x. t2 : coi(X. T)
T-Gen

unfold [X. Nat×X] (gen [X. Nat×X] v with x.t2)
−→

let v2 = [x 7→ v]t2 in {v2.1, (gen [X. Nat×X] v2.2 with x.t2)}

E-Gen-Stream

Observation
unfold [X. T ] (gen [X. T ] v with x. t2) should substitute x with v in t2, obtain the result v2, and replace every
sub-structure vsub of v2 that corresponds to an occurrence of X in T by gen [X. T ] vsub with x. t2.
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Generalizing the gen Operator
Observation
unfold [X. T ] (gen [X. T ] v with x. t2) should substitute x with v in t2, obtain the result v2, and replace every
sub-structure vsub of v2 that corresponds to an occurrence of X in T by gen [X. T ] vsub with x. t2.

Principle
Recall that for any positive type operator X. T , the term map [X. T ] v with y. t replaces every sub-structure vsub
of v that corresponds to an occurrence of X in T by [y 7→ vsub]t.

unfold [X. T ] (gen [X. T ] v with x. t2)
−→

map [X. T ] [x 7→ v]t2 with y. (gen [X. T ] y with x. t2)

E-Gen

Question
Derive the evaluation rule E-Gen-Stream from this more general rule.
Design Principles of Programming Languages, Spring 2025 50



Formulation of Inductive/Coinductive Types
Syntactic Forms

t ::= . . . | fold [X. T ] t | iter [X. T ] t with x. t | unfold [X. T ] t | gen [X. T ] t with x. t2
v ::= . . . | fold [X. T ] v | gen [X. T ] v with x. t
T ::= . . . | X | ind(X. T) | coi(X. T) where X. T pos

Remark
Inductive types are characterized by how to construct them (i.e., fold).
Coinductive types are characterized by how to destruct them (i.e., unfold).

Aside
Read more about inductive & coinductive types: N. P. Mendler. 1987. Recursive Types and Type Constraints in
Second-Order Lambda Calculus. In Logic in Computer Science (LICS’87), 30–36.
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Revisiting General Recursive Types
Solving the Type Equation
Let JTK be the set of values of type T , e.g., JUnitK = {unit}, JBoolK = {true, false}.
Consider BoolList. The solution JXK to the equation X = Unit+ Bool×X should satisfy:JXK ∼=

{
inl unit

}
∪
{
inr {v1, v2} | v1 ∈ JBoolK, v2 ∈ JXK}

Question
Does the definition mean least or greatest solution?

Principle (Types are NOT Sets)
For example, arrow types characterize computable functions, not arbitrary functions.
Otherwise, the equation X = X → X (with the understanding of partial functions) does not have a solution.
Formal (and unique) characterization of recursive types requires domain theory: S. Abramsky and A. Jung. 1995.
Domain Theory. In Handbook of Logic in Computer Science (Vol. 3): Semantic Structures. Oxford University Press,
Inc. https://dl.acm.org/doi/10.5555/218742.218744.
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Revisiting General Recursive Types
Eager Semantics

t ::= . . . | fold [X. T ] t | unfold [X. T ] t v ::= . . . | fold [X. T ] v T ::= . . . | X | µX. T

unfold [X.S] (fold [Y. T ] v1) −→ v1
E-UnfoldFold

t1 −→ t ′1
fold [X. T ] t1 −→ fold [X. T ] t ′1

E-Fold

Recursive types have an inductive flavor under eager semantics.
Coinductive analogues are accessible as well by using function types.

Lazy Semantics

t ::= . . . | fold [X. T ] t | unfold [X. T ] t v ::= . . . | fold [X. T ] t T ::= . . . | X | µX. T

unfold [X.S] (fold [Y. T ] t1) −→ t1
E-UnfoldFold

no E-Fold
Recursive types have a coinductive flavor under lazy semantics.
However, the inductive analogues are inaccessible.
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Subtyping
Can we deduce the relation below, given that Even <: Nat?

µX. Nat → (Even×X) <: µX. Even → (Nat×X)

→

Nat ×

Even →

Nat ×

Even ...

→

Even ×

Nat →

Even ×

Nat ...

<:

:> <:

<: <:

:> <:

<: <:
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Review: Subtyping in Chapters 15 & 16
For brevity, we only consider three type constructors: →,×, and Top.

T ::= Top | T → T | T × T

Declarative Version

T <: Top
T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

S1 <: T1 S2 <: T2

S1 × S2 <: T1 × T2

S <: S

S <: U U <: T

S <: T

Algorithmic Version

▷T <: Top
▷T1 <: S1 ▷S2 <: T2

▷S1 → S2 <: T1 → T2

▷S1 <: T1 ▷S2 <: T2

▷S1 × S2 <: T1 × T2
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µ-Types

Definition
Let X range over a fixed countable set {X1,X2, . . .} of type variables. The set of raw µ-types is the set of
expressions defined by the following grammar (inductively):

T ::= X | Top | T → T | T × T | µX. T

Definition
A raw µ-type T is contractive (and called a µ-type) if, for any subexpression of T of the form
µX1.µX2. . . . µXn.S, the body S is not X.

Question
How to extend the subtype relation to support µ-types?
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Subtyping on µ-Types

An Attempt: µ-Folding Rules

S <: [X 7→ µX. T ]T
S <: µX. T

[X 7→ µX.S]S <: T

µX.S <: T

Question
Do those rules work?
Try those rules to check if µX. Top×X <: µX. Top× (Top×X) holds.
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Subtyping on µ-Types
Example
Let S ≡ µX. Top×X and T ≡ µX. Top× (Top×X).

Top <: Top

Top <: Top

...
S <: T

Top× S <: Top× T

S <: Top× T

Top× S <: Top× (Top× T)

Top× S <: T

S <: T

Observation
The inference works only if we consider the subtyping rules coinductively, i.e., consider the largest relation
generating by the subtyping rules.
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Why?

→

Nat ×

Even →

Nat ×

Even ...

→

Even ×

Nat →

Even ×

Nat ...

<:

:> <:

<: <:

:> <:

<: <:

Principle
The subtype relation must consider types with structures like infinite trees.
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Hypothetical Subtyping
Σ ` S <: T : “one can derive S <: T by assuming the subtype facts in Σ”

(S <: T) ∈ Σ

Σ ` S <: T Σ ` T <: Top
Σ ` T1 <: S1 Σ ` S2 <: T2

Σ ` S1 → S2 <: T1 → T2

Σ ` S1 <: T1 Σ ` S2 <: T2

Σ ` S1 × S2 <: T1 × T2

Σ,S <: µX. T ` S <: [X 7→ µX. T ]T
Σ ` S <: µX. T

Σ,µX.S <: T ` [X 7→ µX.S]S <: T

Σ ` µX.S <: T

Let S ≡ µX. Top×X and T ≡ µX. Top× (Top×X).

. . . ` Top <: Top

. . . ` Top <: Top
(S <: T) ∈ S <: T , . . .
S <: T , . . . ` S <: T

S <: T , . . . ` Top× S <: Top× T

S <: T , . . . ` S <: Top× T

S <: T , . . . ` Top× S <: Top× (Top× T)

S <: T ` Top× S <: T

∅ ` S <: T
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Why Does Hypothetical SubtypingWork?

Top <: Top

Top <: Top

...
S <: T

Top× S <: Top× T

S <: Top× T

Top× S <: Top× (Top× T)

Top× S <: T

S <: T

Observation (Termination)
To check the original subtype relation S <: T between µ-types, the set of reachable states S ′ <: T ′ is finite.
See Chapter 21.9 for a detailed argument.

Question (Correctness)
Why is hypothetical subtyping correct with respect to the original (coinductive) subtype relation?
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Coinductive Subtyping
Definition (Generating Functions)
A generating function is a function F : P(U) → P(U) that ismonotone, i.e., X ⊆ Y implies F(X) ⊆ F(Y).
Let F be monotone. A subset X ofU is a fixed point of F if F(X) = X.
The least fixed point is written µF. The greatest fixed point is written νF.1

Subtype Relation
Let Tm denote the set of all µ-types. Two µ-types S and T are said to be in the subtype relation (“S is a subtype of
T ”) if (S, T) ∈ νFd, where the monotone function Fd : P(Tm × Tm) → P(Tm × Tm) is defined as follows:

Fd(R) ≡ {(T , Top) | T ∈ Tm}

∪ {(S1 → S2, T1 → T2) | (T1,S1), (S2, T2) ∈ R}

∪ {(S1 × S2, T1 × T2) | (S1, T1), (S2, T2) ∈ R}

∪ {(S,µX. T) | (S, [X 7→ µX. T ]T) ∈ R}∪ {(µX.S, T) | ([X 7→ µX.S]S, T) ∈ R}

1Their existence and uniqueness can be justified by the Knaster-Tarski Theorem.
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Correctness of Hypothetical Subtyping
Lemma
Suppose Σ ` S <: T and each S ′ <: T ′ in Σ satisfies (S ′, T ′) ∈ νFd.
Then (S, T) ∈ νFd.

Proof Sketch
By induction on the derivation of Σ ` S <: T .
For µ-folding rules, we need the fact that νFd is the greatest fixed point of Fd.

Lemma
Suppose (S, T) ∈ νFd. Then∅ ` S <: T .

Proposition
Suppose Σ ` S <: T does NOT hold and each S ′ <: T ′ in Σ satisfies (S ′, T ′) ∈ νFd.
Then (S, T) 6∈ νFd.
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Algorithmic Hypothetical Subtyping
Σ ` S <: T ▷>/⊥: “one can/cannot derive S <: T by assuming the subtype facts in Σ”

(S <: T) ∈ Σ

Σ ` S <: T ▷>
(T , Top) 6∈ Σ

Σ ` T <: Top▷>

(S1 → S2, T1 → T2) 6∈ Σ

Σ ` T1 <: S1 ▷> Σ ` S2 <: T2 ▷>
Σ ` S1 → S2 <: T1 → T2 ▷>

(S1 → S2, T1 → T2) 6∈ Σ

Σ ` T1 <: S1 ▷⊥
Σ ` S1 → S2 <: T1 → T2 ▷⊥

(S1 → S2, T1 → T2) 6∈ Σ

Σ ` T1 <: S1 ▷> Σ ` S2 <: T2 ▷⊥
Σ ` S1 → S2 <: T1 → T2 ▷⊥

(S,µX. T) 6∈ Σ

Σ,S <: µX. T ` S <: [X 7→ µX. T ]T ▷ ans
Σ ` S <: µX. T ▷ ans

(µX.S, T) 6∈ Σ T 6= Top T 6= µY.U
Σ,µX.S <: T ` [X 7→ µX.S]S <: T ▷ ans

Σ ` µX.S <: T ▷ ans
Otherwise, we have Σ ` S <: T ▷⊥.

Proposition
Suppose Σ ` S <: T ▷⊥ and each S ′ <: T ′ in Σ satisfies (S ′, T ′) ∈ νFd. Then (S, T) 6∈ νFd.
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Aside: Why is Coinductive Subtyping Indeed Correct?
Definition
A tree type is a partial function T : {1, 2}∗ ⇀ {→,×, Top} satisfying the following constraints:

• T(•) is defined;
• if T(π,σ) is defined then T(π) is defined;
• if T(π) = → or T(π) = × then T(π, 1) and T(π, 2) are defined;
• if T(π) = Top then T(π, 1) and T(π, 2) are undefined.

(Top× Top) → Top
→

× Top

Top Top

1 2

1 2

Top → (Top → (Top → . . .))

→

Top →

Top →

Top ...

1 2

1 2

1 2
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Aside: Why is Coinductive Subtyping Indeed Correct?

Subtype Relation
Let T denote the set of all tree types. Two tree types S and T are said to be in the subtype relation (“S is a subtype
of T ”) if (S, T) ∈ νF, where the monotone function F : P(T × T) → P(T × T) is defined as follows:

F(R) ≡ {(T , Top) | T ∈ T}

∪ {(S1 → S2, T1 → T2) | (T1,S1), (S2, T2) ∈ R}

∪ {(S1 × S2, T1 × T2) | (S1, T1), (S2, T2) ∈ R}

Principle
Under an equi-recursive setting, the subtype relation νF on possibly-infinite tree types is the desired relation.
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Interpreting µ-Types as Possibly-Infinite Tree Types
The function treeof , mapping closed µ-types to tree types, is defined inductively as follows:

treeof (Top)(•) ≡ Top
treeof (T1 → T2)(•) ≡ → treeof (T1 → T2)(i,π) ≡ treeof (Ti)(π)
treeof (T1 × T2)(•) ≡ × treeof (T1 × T2)(i,π) ≡ treeof (Ti)(π)

treeof (µX. T)(π) ≡ treeof ([X 7→ µX. T ]T)(π)

Question
Why is treeof well-defined?

Answer
Every recursive use of treeof on the right-hand side reduces the lexicographic size of the pair (|π|,µ-height(T)),
where µ-height(T) is the number of of µ-bindings at the front of T .
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treeof (µX. ((X× Top) → X))

→

×

→ Top

× ...

...
Top

→

× ...

...
Top

1

1 2

1 2
1 2

2

1 2

1

2
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Aside: Why is Coinductive Subtyping Indeed Correct?

Subtype Relation
Let T denote the set of all tree types. Two tree types S and T are said to be in the subtype relation (“S is a subtype
of T ”) if (S, T) ∈ νF, where the monotone function F : P(T × T) → P(T × T) is defined as follows:

F(R) ≡ {(T , Top) | T ∈ T}

∪ {(S1 → S2, T1 → T2) | (T1,S1), (S2, T2) ∈ R}

∪ {(S1 × S2, T1 × T2) | (S1, T1), (S2, T2) ∈ R}

Theorem
Recall that Fd is the generating function for the subtype relation on µ-types.
Let (S, T) ∈ Tm × Tm. Then (S, T) ∈ νFd if and only if (treeof (S), treeof (T)) ∈ νF.
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Homework

Question
• Implement YT (shown on Slide 23) in OCaml/MoonBit. Does it really work as a fixed-point operator? Why?
• How to make it work? Show your solution is effective by using it to define three recursive functions.
• Formulate your solution with explicit fold’s and unfold’s. You may check your solution using the
fullisorec checker.
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