
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

趙海燕，王迪

Peking University, Spring Term 2025

Teaching Team

Instructors

Teaching Assistant

Instructors

• Haiyan Zhao （赵海燕）
– 1988, BS, Peking Univ.

– 1991, MS, Peking Univ

– 2003, PhD, Univ. of Tokyo

– 2003-, Assoc. Professor, Peking Univ.

• Research Interest
– Software engineering

– Requirements Engineering, Domain Engineering

– Programming Languages

• Contact
– Office: Rm. 1809, Science Blg #1, Yanyuan / Rm 432, CS Blg, Changping

– Phone： 62757670

– Email： zhhy.sei@pku.edu.cn

mailto:zhhy.sei@pku.edu.cn

Instructors

• Di Wang （王迪)
– 2017, BS, Peking Univ.

– 2022, PhD, Carnegie Mellon Univ.

– 2022-, Assistant Professor, Peking Univ.

• Research Interests
– Programming Languages

– Quantitative Program Analysis and Verification

– Probabilistic Programming

• Contact
– Office: Rm. 520, Yanyuan Mansion

– Tel: 62757242

– Email: wangdi95@pku.edu.cn

– Webpage: https://stonebuddha.github.io

mailto:wangdi95@pku.edu.cn
https://stonebuddha.github.io/

Teaching Assistant

• Qihao Lian (练琪灏)

– PhD student from Programming Languages Lab, PKU

• Contact

– mepy@stu.pku.edu.cn

• Homework submit to

– pku-dppl@outlook.com

– Each assignment should be submitted before 0:00 AM (midnight) on the following

Monday, and please try to submit all assignments for each week in a single email,

and indicate your student ID, name, and the week number of the assignment in the

email subject (in the format of “2100012345-John-1”)

http://pl.cs.pku.edu.cn/en/
mailto:mepy@stu.pku.edu.cn
mailto:pku-dppl@outlook.com

Information

• Course website: http://pku-dppl.github.io/2025

– Syllabus

– News/Announcements

– Lecture Notes (slides)

– Other useful resources

– Projects

• Time：Monday 7-9 (15:10-18:00)

• Place：昌平教学楼 109

http://pku-dppl.github.io/2025

Course Overview

Computer Science vs PL Construction

System = Specification + Program

“ . . . the technology for coping with

large-scale computer systems

merges with the technology for building

new computer languages, and

computer science itself becomes no more (and

no less) than the discipline of constructing

appropriate descriptive languages ”

Isn’t PL a solved problem?

• A fundamental area within CS

– ……

– 1930’s:

– 1940’s:

– 1950’s

– 1960’s:

– 1970’s：

– 1980’s：

– 1990’s：

– 2000’s：

– ……

Isn’t PL a solved problem?

• A fundamental area within CS

– 1930’s: lambda-calculus

– 1940’s:

– 1950’s: Fortran, LISP, COBOL, …

– 1960’s: ALGOL60, PL/1, ALGOL68, …

– 1970’s：C, Pascal, Smalltalk, MODULA, Scheme, ML, …

– 1980’s： Ada, C++, …

– 1990’s： Java, …

– 2000’s： Rust, …

– ……

Programming Languages

• Touches most other areas of CS

– Theory:

– Systems:

– Arch:

– Numeric

– DB:

– Networking:

– Graphics:

– Security:

– Software Engineering:

– ….

• Both theory(math) and practice (engineering)

Programming Languages

• Touches most other areas of CS

– Theory: DFAs, TMs, ….

– Systems: system calls, memory management , …

– Arch: compiler targets. Optimizations, stack frames , …

– Numeric: FORTRAN, matlab , …

– DB: SQL , …

– Networking: packet filter. protocols , …

– Graphics: OpenGL, LaTeX, PostScript , …

– Security: buffer overruns, .net, bytecode , …

– Software Engineering: bug finding, refactoring, types, …

– ….

• Both theory (math) and practice (engineering)

This course is not about …

• An introduction to programming

• A course on compiler

• A course on functional programming

• A course on language paradigms/styles

All the above are certainly helpful for your deep understanding of
this course.

What is this course about?

• Study fundamental (formal) approaches to describing program

behaviors that are both precise and abstract.

– precise so that we can use mathematical tools to formalize and

check interesting properties

– abstract so that properties of interest can be discussed clearly,

without getting bogged down in low-level details

What you can get out of this course?

• A more sophisticated perspective on programs, programming

languages, and the activity of programming

– How to view programs and whole languages as formal,

mathematical objects

– How to make and prove rigorous claims about them

– Detailed study of a range of basic language features

• Powerful tools/techniques for language design, description, and

analysis

What background is required?

• Basic knowledge on

– Discrete mathematics: sets, functions, relations, orders

– Algorithms: list, tree, graph, stack, queue, heap

– Elementary logics: propositional logic, first-order logic

• Familiar with a programming language and basic knowledge of

compiler construction

Textbook & Reference

• Types and Programming Languages
– Benjamin Pierce
– The MIT Press, 2002

• Practical Foundations for Programming
Languages (Second Edition)

– Robert Harper

– Cambridge University Press, 2016

– https://www.cs.cmu.edu/~rwh/pfpl/
.

http://www.cambridge.org/us/academic/subjects/computer-science/programming-languages-and-applied-logic/practical-foundations-programming-languages-2nd-edition?format=HB

Outline

• Basic operational semantics
and proof techniques

• Untyped Lambda calculus

• Simply typed Lambda calculus

• Simple extensions (basic and
derived types)

• References

• Exceptions

• Subtyping

• Recursive types

• Polymorphism

• [Higher-order systems]

Preliminary: syntax，semantics

Untyped Lambda Calculus

Simple typed Lambda calculus

Simple extensions: basic
and derived types

Universal type:
System F

Case study

Typing

Poly+ subtype

Recursive Type

ADT

FJ

Type operator & Kinding

Reference

Subtyping

Outline

• Basic operational semantics and proof techniques

• Untyped Lambda calculus

• Simple typed Lambda calculus

• Simple extensions (basic and derived types)

• References

• Exceptions

• Subtyping

• Recursive types

• Polymorphism

• [Higher-order systems]

Grading

• Homework (+ Activity in class + take home quiz) : 40 %

• Course project : 60%

You will design and implement a typed programming language with
certain features.
You are encouraged to draw inspiration from popular or emerging
languages, such as Rust, Go, TypeScript, Elm, Scala, Haskell, OCaml,
MoonBit, Koka, Crystal, and Zig.
As a course project, you need to choose a key feature that interests you,
formalize a core calculus for it (ideally based on lambda calculus), prove
its soundness (at least roughly), and implement a prototype (ideally
based on the checkers here from our course material) with an interpreter
and a type checker.

Grading

• Homework (+ Activity in class + take home quiz) : 40 %

• Course project : 60%

– At the end of the semester, you will give a presentation about your work
and submit an artifact containing the following:

• A document that includes your motivation, illustrative examples, a
formalization of the core calculus, and a soundness proof.

• A prototype implementation of your language along with a suite of
benchmark programs.

You will design and implement a typed programming language with certain features.
You are encouraged to draw inspiration from popular or emerging languages, such as
Rust, Go, TypeScript, Elm, Scala, Haskell, OCaml, MoonBit, Koka, Crystal, and Zig.
As a course project, you need to choose a key feature that interests you, formalize a
core calculus for it (ideally based on lambda calculus), prove its soundness (at least
roughly), and implement a prototype (ideally based on the checkers here from our
course material) with an interpreter and a type checker.

Grading

• Homework (+ Activity in class + take home quiz) : 40 %

• Course projects : 60%

– Here are some example projects from previous cohorts of students:

Grading

• Homework (+ Activity in class + take home quiz) : 40 %

• Course projects : 60%

– several potential projects you might consider

– https://pku-dppl.github.io/2025/projects.html

• Project 1: Extensible Records

• Project 2: Gradual Typing

• Project 3: Typeclass or Trait

• Project 4: Functional In-place Update

• Project 5: Refinement Types

• Project 6: Asynchronous Programming

https://pku-dppl.github.io/2025/projects.html
https://pku-dppl.github.io/2025/projects.html#project-1-extensible-records
https://pku-dppl.github.io/2025/projects.html#project-2-gradual-typing
https://pku-dppl.github.io/2025/projects.html#project-3-typeclass-or-trait
https://pku-dppl.github.io/2025/projects.html#project-4-functional-in-place-update
https://pku-dppl.github.io/2025/projects.html#project-5-refinement-types
https://pku-dppl.github.io/2025/projects.html#project-6-asynchronous-programming

How to study this course?

• Before class: scanning through the chapters to learn and gain

feeling about what will be studied

• In class: trying your best to understand the contents and raising

hands when you have questions at any time

– Discussion / lecture

• After class: doing exercises seriously

Chapter 1

Introduction

What is a type system

What type systems are good for

Type systems and programming languages

Type system in PL (CS)

What is a type system (type theory)?

• A type system is a tractable syntactic method for proving the absence of
certain program behaviors by classifying phrases according to the kinds of
values they compute.

– Tools for program reasoning

– Classification of terms
• according to the properties of the values that the terms (syntactic phrases) will

compute when executed.

– Static approximation
• calculating a kind of static approximation to the run-time behaviors of the terms

– Proving the absence rather than presence of bad program behaviors
• Being static, type systems are necessarily conservative, and the tension between

conservativity and expressiveness is a fundamental fact of life in the design of type
systems

• only guarantee that well-typed programs are free from certain kinds of misbehavior

– Fully automatic (and efficient)
• Typecheckers are typically built into compilers or linkers

What are type systems good for?

• Detecting Errors

– Many programming errors can be detected early, fixed intermediately and easily.

– Errors can often be pinpointed more accurately during typechecking than at run time

– Expressive type systems offer numerous “tricks” for encoding information about structure in

terms of types.

• Abstraction

– Type systems form the backbone of the module languages and tie together the components of large

systems in the context of large-scale software composition

– An interface itself can be viewed as “the type of a module” , providing a summary of the facilities

provided by the module.

• Documentation

– Type declarations in procedure headers and module interfaces constitute a form of (checkable)

documentation, which cannot become outdated as it is checked during every run of the compiler.

– This role of types is particularly important in module signatures.

What are type systems good for?

• Language Safety

– A safe language is one that protects its own abstractions.

– Safety refers to the language’s ability to guarantee the integrity of these

abstractions and of higher-level abstractions introduced by the programmer

using the definitional facilities of the language.

– Language safety is not the same thing as static type safety, and can be

achieved by static checking, but also by run-time checks.

• Efficiency

– Removal of dynamic checking; smart code-generation.

– Most high-performance compilers today rely heavily on information gathered by

the typechecker during optimization and code-generation phases.

Type Systems and Languages Design

• Language design should go hand-in-hand with type system design.

– Languages without type systems tend to offer features that make

type-checking difficult or infeasible.

– Concrete syntax of typed languages tends to be more complicated

than that of untyped languages, since type annotations must be

taken into account.

In typed languages the type system itself is often taken as the foundation of the
design and the organizing principle in light of which every other aspect of the design
is considered.

Design Programming Languages

• Simplicity

– syntax

– semantics

• Readability

• Safety

• Support for programming large systems

• Efficiency (of execution and compilation)

-- Hints on programming language design by C.A.R. Hoare

Design Programming Languages

• Choose a specific application area

• Make the design committee as small as possible

• Choose some precise design goals

• Release version one of the language to a small set of interested people

• Revise the language definition

• Attempt to build a prototype compiler / to provide a formal definition of the

language semantics

• Revise the language definition again

• Produce a clear, concise language manual and release it

• Provide a production quality compiler and distribute it widely

• Write marvelously clear primers explaining how to use the language

-- “Fundamentals of Programming Languages” by Ellis Horowitz

Chapter 3

Untyped Arithmetic Expressions

A small language of Numbers and Booleans

Basic aspects of programming languages

Introduction

Grammar

Programs

Evaluation

Grammar (Syntax)

terms:
constant true
constant false
conditional
constant zero
successor
predecessor
zero test

t: metavaraible in the right-hand side (non-terminal symbol)

t ::=
true
false
if t then t else t
0
succ t
pred t
iszero t

For the moment, the words term and expression are used interchangeably

Programs and Evaluations

• A program in the language is just a term built from the forms given by the
grammar

if false then 0 else 1 (1 = succ 0)

→ 1

iszero (pred (succ 0))

→ true

succ (succ (succ (0)))

→?

iszero pred succ 0

succ succ succ 0

Syntax

Many ways of defining syntax (besides grammar)

Terms, Inductively

The set of terms is the smallest set T such that

1. {true, false, 0} ⊆ T;

2. if t1 ∈ T,

then {succ t1, pred t1, iszero t1} ⊆ T;

3. if t1 ∈ T, t2 ∈ T, and t3 ∈ T,

then if t1 then t2 else t3 ∈ T.

Terms, by Inference Rules

The set of terms is defined by the following rules:

Inference rules = Axioms + Proper rules

each rule: If we have established the statements in the premise(s) listed above the line,
then we may derive the conclusion below the line

Terms, Concretely

For each natural number i, define a set Si as follows:

Finally, let

Exercise [**]: How many elements does S3 have?

Proposition: T = S

Induction on Terms

Inductive definitions

Inductive proofs

Inductive Definitions

The set of constants appearing in a term t, written Consts(t), is defined

as:

Inductive Definitions

The size of a term t, written size(t), is defined as follows:

Inductive Definitions

The depth of a term t, written depth(t), is defined as follows:

Inductive Proof

Lemma. The number of distinct constants in a term t is no greater

than the size of t:

| Consts(t) | ≤ size(t)

Proof. By induction over the depth of t.

– Case t is a constant : |Consts(t)| = |{t}| = 1 = size(t).

– Case t is pred t1, succ t1, or iszero t1

By the induction hypothesis, |Consts(t1)| ≤ size(t1), and we have:

|Consts(t)| = |Consts(t1)| ≤ size(t1) < size(t).

– Case t is if t1 then t2 else t3
?

Inductive Proof

• Induction on depth/size of terms is analogous to complete induction

on natural numbers

• Ordinary structural induction, which is used to prove properties pf

recursively/inductively defined structures, corresponds to the ordinary

natural number induction principle where the induction step requires

that P(n+1) be established from just the assumption P(n)

− it is common practice to use structural induction wherever

possible, since it works on terms directly, avoiding the detour via

numbers

Inductive Proof

Theorem [Structural Induction]

If, for each term s,

given P(r) for all immediate subterms r of s, we can show P(s),

then P(s) holds for all s.

Suppose P is a predicate on terms, and separately considering each of
the possible forms that term s could have

• Ordinary structural induction, which is used to prove properties pf

recursively/inductively defined structures, corresponds to the ordinary

natural number induction principle where the induction step requires

that P(n+1) be established from just the assumption P(n)

− structural induction, wherever possible, works on terms directly

Semantic Styles

Three basic approaches

Operational Semantics

• Operational semantics specifies the behavior of a programming

language by defining a simple abstract machine for it.

• An example (often used in this course):

– terms as states, rather than some low-level microprocessor

instruction set

– behavior : transition from one state to another as simplification

– meaning of t is the final state starting from the state

corresponding to t

Denotational Semantics

• The meaning of a term is taken to be some mathematical object, such
as a number or a function

– basically it's related to mathematical functions, which take
something as an input, do some computation that you don't care
about and produce a result, which you care about

• Giving denotational semantics for a language consists of

– finding a collection of semantic domains, and then

– defining an interpretation function mapping terms into elements of
these domains.

• Main advantage: It abstracts from the gritty details of evaluation and
highlights the essential concepts of the language.

Axiomatic Semantics

• Axiomatic methods take the laws (properties) themselves as the
definition of the language.

– Instead of first defining the behaviors of programs (by giving some
operational or denotational semantics) and then deriving laws from
this definition

– axiomatic semantics is more concerned with specifying the
conditions under which programs are correct.

• The meaning of a term is just what can be proved about it

– They focus attention on the process of reasoning about programs

– Hoare logic: define the meaning of imperative languages

Axiomatic Semantics

• Key Concepts:

– Logical Axioms: used to describe the properties of basic language constructs. These axioms serve as the

foundation for reasoning about the correctness of programs.

• e.g., in a language with assignment statements, an axiom might state that if x:=e is executed, the

value of x will be the value of e after execution.

– Inference Rules: used to derive properties of more complex constructs from simpler ones. These rules

allow us to build up a proof of correctness for a program by combining the properties of its components.

• e.g., the rule of composition allows us to combine the properties of two statements executed

sequentially.

– Preconditions and Postconditions: to specify the correctness of programs.

• A precondition is a logical condition that must be true before a program segment is executed; A postcondition is a

logical condition that must be true after the program segment has executed.

• e.g. , for a statement S with precondition P and postcondition Q, Hoare triplet {P}S{Q} means that if P holds

before S is executed, then Q will hold after S is executed.

– Loop Invariants: a condition that remains true throughout the execution of a loop.

• e.g. , for a while loop: {P} while b do S {Q}

• The invariant P must be true before the loop starts, must be preserved by the loop body S, and must imply the

postcondition Q when the loop terminates.

Evaluation

Evaluation relation (small-step/big-step)

Normal form

Confluence and termination

Evaluation on Booleans

t evaluates to t’ in one step

One-step Evaluation Relation

• The one-step evaluation relation → is the smallest binary relation on

terms satisfying the three rules

• When the pair (t, t′) is in the evaluation relation, we say that

“t → t′ is derivable.”

How to evaluate the term? :
if true then (if false then false else false) else true

Computation rules

congruence rule

Derivation Tree

“if t then false else false → if u then false else false” is witnessed by

the following derivation tree:

an evaluation statement t → t’ is derivable iff
there is a derivation tree with t → t’ as the label at its root

Induction on Derivation

Theorem [Determinacy of one-step evaluation]:

If t → t′ and t → t′′, then t′ = t′′.
Proof. By induction on derivation of t → t′.

If the last rule used in the derivation of t → t′ is E-IfTrue, then t has the form

if true then t2 else t3.

It can be shown that there is only one way to reduce such t.

……

At each step of the induction, we assume the desired result for all smaller derivations, and

proceed by a case analysis of the evaluation rule used at the root of the derivation.

a powerful proof technique based on the structure of derivation trees

and leverages induction to prove properties that hold for all possible

derivations in a formal system.

Normal Form

• Definition: A term t is in normal form if no evaluation rule applies to it.

• Theorem: Every value is in normal form.

– At present, the converse of this Theorem is also true: every normal
form is a value.

• Theorem: If t is in normal form, then t is a value.

– Prove by contradiction (then by structural induction).

One-step evaluation relation shows how an abstract machine moves from one
state to the next while evaluating a given term.
However, from the perspective of programmers, we are interested in the final
results of evaluation, i.e., in states from which the machine cannot take a step.

Multi-step Evaluation Relation

• Definition: The multi-step evaluation relation →∗ is the reflexive,

transitive closure of one-step evaluation.

• Theorem [Uniqueness of normal forms]:

If t →∗ u and t →∗ u′, where u and u′ are both normal forms, then

u = u′.

• Theorem [Termination of Evaluation]:

For every term t there is some normal form t′ such that t →∗ t′.

Relates a term to all of the terms that can be derived from it by zero or

more single steps of evaluation.

– It is sometimes convenient to be able to view many steps of
evaluation as one big state transition.

Extending Evaluation to Numbers

Stuckness

• Definition: A closed term is stuck if it is in normal form but not a value.

• Examples:

– succ true

– succ false

– if zero then true else false

Big-step Evaluation

Summary

• How to define syntax?

– Grammar, Inductively, Inference Rules, Generative

• How to define semantics?

– Operational, Denotational, Axomatic

• How to define evaluation relation (operational semantics)?

– Small-step/Big-step evaluation relation

– Normal form

– Confluence/termination

An Implementation

for Arithmetic

Expression

Structure of arith

Scan tokes
(lexer.mll)

Parse terms
(parser.mly)

Evaluate
each terms

(eval in
core.ml)

Print the
values

(printtm in
syntax.ml)

main.ml drives the whole process

syntax.ml defines the terms

Makefile

Rules for compiling and linking the typechecker/evaluator

#

Type

make to rebuild the executable file f

make windows to rebuild the executable file f.exe

make test to rebuild the executable and run it on input file test.f

make clean to remove all intermediate and temporary files

make depend to rebuild the intermodule dependency graph that is used

by make to determine which order to schedule compilations. You should not need to do this unless

you add new modules or new dependencies between existing modules. (The graph is stored in the file

.depend)

These are the object files needed to rebuild the main executable file

#

OBJS = support.cmo syntax.cmo core.cmo parser.cmo lexer.cmo main.cmo

Files that need to be generated from other files

DEPEND += lexer.ml parser.ml

Syntax.ml

info: a data type recording the position of the term in the source file

eval in core.ml

eval1: perform a single step reduction

Commands

• Each line of the source file is parsed as a command
– type command = | Eval of info * term

– New commands will be added later

• Main routine for each file

let process_file f =

alreadyImported := f :: !alreadyImported;

let cmds = parseFile f in

let g c =

open_hvbox 0;

let results = process_command c in

print_flush();

results

in

List.iter g cmds

Homework

• Read Chapters 1 and 2.

• Read Chapter 3 and do Exercise 3.5.13 & 3.5.16.

• Please preview and install MoonBit/ OCaml and its utilities

– MoonBit Language

• https://www.moonbitlang.com/

– Install OCaml and read “Basics” [optional]

• Overview

– https://ocaml.org/docs/

• Installation

– https://ocaml.org/docs/up-and-running

https://www.moonbitlang.com/
https://ocaml.org/docs/
https://ocaml.org/docs/up-and-running

Homework

• Read Chapter to see how to implement a language, and download

the implementation package of the TAPL (either in Ocaml or MoonBit),

and digest the source codes in archives of arith

– https://github.com/pku-dppl/TAPL-in-MoonBit/

– https://www.cis.upenn.edu/~bcpierce/tapl/checkers/

• [optional] Please give your implementation for Chap. 4, and try to

use arith to write the following equation

– Return five if two is not zero, otherwise return nine

– Hint: read the code in parser.mly

https://github.com/pku-dppl/TAPL-in-MoonBit/
https://www.cis.upenn.edu/~bcpierce/tapl/checkers/

Thanks for listening

