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Chapter 11: 
Simply Extensions

Basic Types / The Unit Type

Derived Forms: Sequencing and Wildcard

Ascription / Let Binding

Pairs / Tuples/Records

Sums / Variants

General Recursion / Lists 



Base Types

• Up to now, we’ve formulated “base types” (e.g. Nat) by adding them to the syntax

of types, extending the syntax of terms with associated constants (zero) and

operators (succ, etc.) and adding appropriate typing and evaluation rules.

• We can do this for as many base types as we like.

• For more theoretical discussions (as opposed to programming) we can often

ignore the term-level inhabitants of base types, and just treat these types as

uninterpreted constants.

− e.g., suppose B and C are some base types, we can ask (without knowing

anything more about B or C) whether there are any types S and T such that

the term

(λf: S. λg: T. f g) (λx: B. x)

is well typed.
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Base Types

• Base types in every programming language

─ sets of simple, unstructured values such as numbers, booleans, or 

characters, and 

─ primitive operations for manipulating these values. 

• Theoretically, our language is equipped with some uninterpreted 

base (atomic) types, with no primitive operations on them at all.

Using A, B, C, … both as the names of base types and metavariables ranging
over base types, relying on context to tell which is intended in a particular
instance.
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Base Types

• Identity function

λx:A. x;

<fun>: A → A 

λx:B. x; 

<fun>: B → B 

• Function repeating  the behavior of function f on argument x two times

λf: A → A. λx: A. f (f (x))

<fun>: (A → A) → A → A
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The Unit Type

• The singleton type (like void in C).

• Unit-type expressions care more about “side effects”  rather than 

“results”

− unit is the only possible result of evaluating an expression of type Unit
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Derived Form: Sequencing t1; t2

• A direct extension λE

─ t  ::=  …

t1;  t2

─ New evaluation relation rules

─ New typing rules
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Derived Form: Sequencing t1 ; t2

• Derived form (λE): syntactic sugar

• Theorem [Sequencing is a derived form]:

Let e ∈ 𝜆𝐸 → 𝜆𝐼 be the elaboration function (desugaring)

that translates from the external to the internal language by replacing

every occurrence of t1; t2 with (λx: Unit. t2) t1.
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Derived Form:  Wildcard

• A derived form

λ_: S. t ⟶ λx: S. t

where x is some variable not occurring in t.

• Useful in writing a “dummy” lambda abstraction in which the

parameter variable is not actually used in the body of the abstraction.

Design Principles of Programming Language, Spring 2025 9



Ascription

• t as T

─ the ability to explicitly ascribe a particular type T to a given term t

─ checking if the term t has the type T,  useful for 

⚫ documentation and pinpointing error sources

⚫ controlling type printing

⚫ specializing types (after learning subtyping)
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Ascription

verification

New syntactic forms

New evaluation rules

New typing rules

Ascription as a derived form
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Let Bindings

• To give names to some of its subexpressions. 

New syntactic forms

New evaluation rules

New typing rules
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Let Bindings

• Is “let binding” a derived form?

Yes?               let x = t1 in t2 ⟶ (λx:T1. t2) t1

• Desugaring is not on terms but on typing derivations
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Pairs, Tuples, and Records

- Compound data structures -



Pairs
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Evaluation rules for pairs
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Evaluation rules for pairs

• examples
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Typing rules for pairs
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Tuples

• Generalization: binary ➔ n-ary products
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Records

• Generalization: n-ary products ➔ labeled records

Question:  {partno=5524, cost=30.27} = {cost=30.27, partno=5524}? 
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Sums and Variants



Sums

• To deal with heterogeneous collections of values.

• e.g., Address books

─ Injection by tagging (disjoint unions)

─ Processing by case analysis
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Sums

• To deal with heterogeneous collections of values. 

New syntactic forms

T1+T2 is a disjoint union of T1 and T2 (the tags inl and inr ensure disjointness)
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Sums

New evaluation rules
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Sums (with Unique Typing)

New typing rules
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Sums and Uniqueness of Types

• Problem 

If t has type T, then inl t has type T + U for every U.

the uniqueness of types is broken, a lot of U.

• Possible solutions

─ “Infer” U as needed during typechecking

─ Give constructors different names and only allow each name to appear in one 

sum type (requires generalization to “variants”) — OCaml’s solution

─ Annotate each inl and inr with the intended sum type (Figure 11-10) 
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Variants

• Generalization:   Sums ➔ Labeled variants

─ T1 + T2 ➔ <l1:T1, l2:T2>

─ inl t as T1 + T2 ➔ < l1  = t > as  <l1:T1, l2:T2>

• Example:
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Variants
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Special Instances of Variants

• Options

OptionalNat = <none: Unit, some: Nat>; 

• Enumerations

Weekday = <monday: Unit, tuesday: Unit, wednesday: Unit, 

thursday:Unit, friday: Unit>; 

• Single-Field Variants (with just one single lable)

V = <l: T>

― Operations on T cannot be applied to elements of V without first unpackaging 

them: a V cannot be accidentally mistaken for a T
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Recursion 



Recursions in 𝛌→

• In simply typed lambda-calculus 𝛌→,  all programs terminate. 

• Hence, untyped terms like omega and fix are not typable.

• We can extend the system with a (typed) fixed-point operator ...
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Example

ff : (Nat → Bool) → Nat → Bool

iseven Nat → Bool
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• What types for ff and iseven ?

• What type for fix?



General Recursions

• Introduce “fix” operator :  fix f = f (fix f)

― It cannot be defined as a derived form in simply typed lambda calculus

New syntactic forms

New evaluation rules
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General Recursions

New typing rules
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General Recursions

• Another example:

Design Principles of Programming Language, Spring 2025 35



General Recursions

• One more example: Given any type T, can you define a term that has 

type T?

x as T

fix (λx:T. x)
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General Recursions
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• A convenient form



Lists
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Homework ☺

• Read Chapter 11.

• Do Exercise 11.11.1  & 11.12.1
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