
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2025

Chapter 11:
Simply Extensions

Basic Types / The Unit Type

Derived Forms: Sequencing and Wildcard

Ascription / Let Binding

Pairs / Tuples/Records

Sums / Variants

General Recursion / Lists

Base Types

• Up to now, we’ve formulated “base types” (e.g. Nat) by adding them to the syntax

of types, extending the syntax of terms with associated constants (zero) and

operators (succ, etc.) and adding appropriate typing and evaluation rules.

• We can do this for as many base types as we like.

• For more theoretical discussions (as opposed to programming) we can often

ignore the term-level inhabitants of base types, and just treat these types as

uninterpreted constants.

− e.g., suppose B and C are some base types, we can ask (without knowing

anything more about B or C) whether there are any types S and T such that

the term

(λf: S. λg: T. f g) (λx: B. x)

is well typed.

Design Principles of Programming Language, Spring 2025 3

Base Types

• Base types in every programming language

─ sets of simple, unstructured values such as numbers, booleans, or

characters, and

─ primitive operations for manipulating these values.

• Theoretically, our language is equipped with some uninterpreted

base (atomic) types, with no primitive operations on them at all.

Using A, B, C, … both as the names of base types and metavariables ranging
over base types, relying on context to tell which is intended in a particular
instance.

Design Principles of Programming Language, Spring 2025 4

Base Types

• Identity function

λx:A. x;

<fun>: A → A

λx:B. x;

<fun>: B → B

• Function repeating the behavior of function f on argument x two times

λf: A → A. λx: A. f (f (x))

<fun>: (A → A) → A → A

Design Principles of Programming Language, Spring 2025 5

The Unit Type

• The singleton type (like void in C).

• Unit-type expressions care more about “side effects” rather than

“results”

− unit is the only possible result of evaluating an expression of type Unit

Design Principles of Programming Language, Spring 2025 6

Derived Form: Sequencing t1; t2

• A direct extension λE

─ t ::= …

t1; t2

─ New evaluation relation rules

─ New typing rules

Design Principles of Programming Language, Spring 2025 7

Derived Form: Sequencing t1 ; t2

• Derived form (λE): syntactic sugar

• Theorem [Sequencing is a derived form]:

Let e ∈ 𝜆𝐸 → 𝜆𝐼 be the elaboration function (desugaring)

that translates from the external to the internal language by replacing

every occurrence of t1; t2 with (λx: Unit. t2) t1.

Design Principles of Programming Language, Spring 2025 8

Derived Form: Wildcard

• A derived form

λ_: S. t ⟶ λx: S. t

where x is some variable not occurring in t.

• Useful in writing a “dummy” lambda abstraction in which the

parameter variable is not actually used in the body of the abstraction.

Design Principles of Programming Language, Spring 2025 9

Ascription

• t as T

─ the ability to explicitly ascribe a particular type T to a given term t

─ checking if the term t has the type T, useful for

⚫ documentation and pinpointing error sources

⚫ controlling type printing

⚫ specializing types (after learning subtyping)

Design Principles of Programming Language, Spring 2025 10

Ascription

verification

New syntactic forms

New evaluation rules

New typing rules

Ascription as a derived form

Design Principles of Programming Language, Spring 2025 11

Let Bindings

• To give names to some of its subexpressions.

New syntactic forms

New evaluation rules

New typing rules

Design Principles of Programming Language, Spring 2025 12

Let Bindings

• Is “let binding” a derived form?

Yes? let x = t1 in t2 ⟶ (λx:T1. t2) t1

• Desugaring is not on terms but on typing derivations

Design Principles of Programming Language, Spring 2025 13

Pairs, Tuples, and Records

- Compound data structures -

Pairs

Design Principles of Programming Language, Spring 2025 15

Evaluation rules for pairs

Design Principles of Programming Language, Spring 2025 16

Evaluation rules for pairs

• examples

Design Principles of Programming Language, Spring 2025 17

Typing rules for pairs

Design Principles of Programming Language, Spring 2025 18

Tuples

• Generalization: binary ➔ n-ary products

Design Principles of Programming Language, Spring 2025 19

Records

• Generalization: n-ary products ➔ labeled records

Question: {partno=5524, cost=30.27} = {cost=30.27, partno=5524}?
Design Principles of Programming Language, Spring 2025 20

Sums and Variants

Sums

• To deal with heterogeneous collections of values.

• e.g., Address books

─ Injection by tagging (disjoint unions)

─ Processing by case analysis

Design Principles of Programming Language, Spring 2025 22

Sums

• To deal with heterogeneous collections of values.

New syntactic forms

T1+T2 is a disjoint union of T1 and T2 (the tags inl and inr ensure disjointness)
Design Principles of Programming Language, Spring 2025 23

Sums

New evaluation rules

Design Principles of Programming Language, Spring 2025 24

Sums (with Unique Typing)

New typing rules

Design Principles of Programming Language, Spring 2025 25

Sums and Uniqueness of Types

• Problem

If t has type T, then inl t has type T + U for every U.

the uniqueness of types is broken, a lot of U.

• Possible solutions

─ “Infer” U as needed during typechecking

─ Give constructors different names and only allow each name to appear in one

sum type (requires generalization to “variants”) — OCaml’s solution

─ Annotate each inl and inr with the intended sum type (Figure 11-10)

Design Principles of Programming Language, Spring 2025 26

Variants

• Generalization: Sums ➔ Labeled variants

─ T1 + T2 ➔ <l1:T1, l2:T2>

─ inl t as T1 + T2 ➔ < l1 = t > as <l1:T1, l2:T2>

• Example:

Design Principles of Programming Language, Spring 2025 27

Variants

Design Principles of Programming Language, Spring 2025 28

Special Instances of Variants

• Options

OptionalNat = <none: Unit, some: Nat>;

• Enumerations

Weekday = <monday: Unit, tuesday: Unit, wednesday: Unit,

thursday:Unit, friday: Unit>;

• Single-Field Variants (with just one single lable)

V = <l: T>

― Operations on T cannot be applied to elements of V without first unpackaging

them: a V cannot be accidentally mistaken for a T

Design Principles of Programming Language, Spring 2025 29

Recursion

Recursions in 𝛌→

• In simply typed lambda-calculus 𝛌→, all programs terminate.

• Hence, untyped terms like omega and fix are not typable.

• We can extend the system with a (typed) fixed-point operator ...

Design Principles of Programming Language, Spring 2025 31

Example

ff : (Nat → Bool) → Nat → Bool

iseven Nat → Bool

Design Principles of Programming Language, Spring 2025 32

• What types for ff and iseven ?

• What type for fix?

General Recursions

• Introduce “fix” operator : fix f = f (fix f)

― It cannot be defined as a derived form in simply typed lambda calculus

New syntactic forms

New evaluation rules

Design Principles of Programming Language, Spring 2025 33

General Recursions

New typing rules

Design Principles of Programming Language, Spring 2025 34

General Recursions

• Another example:

Design Principles of Programming Language, Spring 2025 35

General Recursions

• One more example: Given any type T, can you define a term that has

type T?

x as T

fix (λx:T. x)

Design Principles of Programming Language, Spring 2025 36

General Recursions

Design Principles of Programming Language, Spring 2025 37

• A convenient form

Lists

Design Principles of Programming Language, Spring 2025 38

Homework ☺

• Read Chapter 11.

• Do Exercise 11.11.1 & 11.12.1

Design Principles of Programming Language, Spring 2025 39

