
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2025

Chapter 13: Reference
Why reference

Evaluation

Typing

Store Typings

Safety

Why & What References

Computational Effects

Also known as side effects.

A function or expression is said to have a side effect if, in addition to

returning a value, it also modifies some state or has an observable

interaction with calling functions or the outside world.

— modify a global variable or static variable, modify one of its arguments,

— raise an exception,

— write data to a display or file, read data, or

— call other side-effecting functions.

In the presence of side effects, a program's behavior may depend on

history; i.e., the order of evaluation matters.

Design Principles of Programming Languages, Spring 2025 4

Computational Effects

Side effects are the most common way that a program interacts with the

outside world (people, file systems, other computers on networks).

The degree to which side effects are used depends on the

programming paradigm.

─ Imperative programming is known for its frequent utilization of side

effects.

─ In functional programming, side effects are rarely used.

• Functional languages like Standard ML, Scheme and Scala do not

restrict side effects, but it is customary for programmers to avoid them.

• The functional language Haskell expresses side effects such as I/O

and other stateful computations using monadic actions.
Design Principles of Programming Languages, Spring 2025 5

Mutability

So far, what we have discussed does not yet include side effects .

In particular, whenever we defined function, we never changed

variables or data. Rather, we always computed new data.

─ E.g., the operations to insert an item into the data structure didn't

effect the old copy of the data structure. Instead, we always built a

new data structure with the item appropriately inserted.

For the most part, programming in a functional style (i.e., without side

effects) is a "good thing" because it's easier to reason locally about the

behavior of the program.

Design Principles of Programming Languages, Spring 2025 6

Mutability

Writing values into memory locations is the fundamental mechanism

of imperative languages such as C/C++.

Mutable structures are

─ required to implement many efficient algorithms.

─ also very convenient to represent the current state of a state

machine.

Design Principles of Programming Languages, Spring 2025 7

Mutability

In most programming languages, variables are mutable, i.e., a variable
provides both

─ a name that refers to a previously calculated value, and

─ the possibility of overwriting this value with another (which will be
referred to by the same name)

In some languages (e.g., OCaml), these features are separate:

─ variables are only for naming — the binding between a variable and its
value is immutable

─ introduce a new class of mutable values (called reference cells or
references)

• at any given moment, a reference holds a value (and can be dereferenced
to obtain this value)

• a new value may be assigned to a reference

Design Principles of Programming Languages, Spring 2025 8

Basic Examples

#let r = ref 5

val r : int ref = {contents = 5}

// The value of r is a reference to a cell that always contain a number.

r:= !r +3

??

!r

-: int = 8

(r:=succ(!r); !r)

Design Principles of Programming Languages, Spring 2025 9

Basic Examples

let flag = ref true;;

-val flag: bool ref = {contents = true}

if !flag then 1 else 2;;

-: int = 1

Design Principles of Programming Languages, Spring 2025 10

Reference

Basic operations

─ allocation ref (operator)

─ dereferencing !

─ assignment :=

Is there any difference between the expressions of ?

─ 5 + 3;

─ r: = 8;

─ (r:=succ(!r); !r)

─ (r:=succ(!r); (r:=succ(!r); (r:=succ(!r); !r)

sequencing

Design Principles of Programming Languages, Spring 2025 11

Reference

A value of type ref T is a pointer to a cell holding a value of type T

5

r =

Design Principles of Programming Languages, Spring 2025 12

Exercise 13.1.1 :

Draw a similar diagram showing the effects of evaluating the expressions

a = {ref 0, ref 0}

b = (λx:Ref Nat. {x, x}) (ref 0)

Aliasing

A value of type ref T is a pointer to a cell holding a value of type T

5

r =

If this value is “copied” by assigning it to another variable： s = r;

the cell pointed to is not copied. (r and s are aliases)

5

r = s =

We can change r by assigning to s:

(s:=10; !r)
Design Principles of Programming Languages, Spring 2025 13

Aliasing all around us

Reference cells are not the only language feature that introduces the

possibility of aliasing

─ arrays

• communication channels (shared state—between different parts of a

program.)

─ I/O devices (disks, etc.)

Design Principles of Programming Languages, Spring 2025 14

The difficulties of aliasing

• The possibility of aliasing invalidates all sorts of useful forms of

reasoning about programs, both by programmers：

e.g., λ𝑟: 𝑅𝑒𝑓 𝑁𝑎𝑡. λ𝑠: 𝑅𝑒𝑓 𝑁𝑎𝑡. (𝑟 ≔ 2; 𝑠 ≔ 3; ! 𝑟)

always returns 2 unless 𝑟 and s are aliases

and by compilers :
Code motion out of loops, common sub-expression elimination,

allocation of variables to registers, and detection of uninitialized

variables all depend upon the compiler knowing which objects a load

or a store operation could reference.

• High-performance compilers spend significant energy on alias

analysis to try to establish when different variables cannot possibly

refer to the same storage
Design Principles of Programming Languages, Spring 2025 15

The benefits of aliasing

The problems of aliasing have led some language designers simply to

disallow it (e.g., Haskell).

However, there are good reasons why most languages do provide

constructs involving aliasing:

─ efficiency (e.g., arrays)

─ shared resources (e.g., locks) in concurrent systems

─ “action at a distance” (e.g., symbol tables)

─ ...…

Design Principles of Programming Languages, Spring 2025 16

Example
𝑐 = 𝑟𝑒𝑓 0

incc = 𝜆𝑥: 𝑈𝑛𝑖𝑡. (𝑐 ≔ 𝑠𝑢𝑐𝑐 ! 𝑐 ; ! 𝑐)

decc = 𝜆𝑥: 𝑈𝑛𝑖𝑡. (𝑐 ≔ 𝑝𝑟𝑒𝑑 ! 𝑐 ; ! 𝑐)

incc 𝑢𝑛𝑖𝑡

𝑑𝑒𝑐𝑐 𝑢𝑛𝑖𝑡

o = {i = 𝑖𝑛𝑐𝑐, 𝑑 = 𝑑𝑒𝑐𝑐}

𝑙𝑒𝑡 𝑛𝑒𝑤𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = o
𝜆.𝑈𝑛𝑖𝑡 .

let 𝑐 = 𝑟𝑒𝑓 0 in
let incc = 𝜆𝑥: 𝑈𝑛𝑖𝑡. (𝑐 ≔ 𝑠𝑢𝑐𝑐 ! 𝑐 ; ! 𝑐) in

let decc = 𝜆𝑥: 𝑈𝑛𝑖𝑡. 𝑐 ≔ 𝑝𝑟𝑒𝑑 ! 𝑐 ; ! 𝑐
let o = {𝑖 = 𝑖𝑛𝑐𝑐, 𝑑 = 𝑑𝑒𝑐𝑐} in
o

Design Principles of Programming Languages, Spring 2025 17

Example

• Reference values of any type, including functions.

Design Principles of Programming Languages, Spring 2025 18

How to enrich the language

with

the new mechanism?

Design Principles of Programming Languages, Spring 2025 19

Syntax

... plus other familiar types, in examples

Design Principles of Programming Languages, Spring 2025 20

Typing rules

• type system

─ a set of rules that assigns a property called type to the various “constructs”

of a computer program, such as

─ variables, expressions, functions or modules

Design Principles of Programming Languages, Spring 2025 21

Evaluation

What is the value of the expression ref 0 ?

Is
r = ref 0
s = ref 0

and
r = ref 0
s = r

behave the same?

Crucial observation: evaluating ref 0 must do something ?

Specifically, evaluating ref 0 should allocate some storage and yield a
reference (or pointer) to that storage

So what is a reference?
Design Principles of Programming Languages, Spring 2025 22

The store

A reference names a location in the run-time store (also known as the

heap or just the memory)

What is the store?

─ Concretely: an array of 8-bit bytes, indexed by 32/64-bit integers

─ More abstractly: an array of values, abstracting away from the

different sizes of the runtime representations of different values

─ Even more abstractly: a partial function from locations to values

• set of store locations

Design Principles of Programming Languages, Spring 2025 23

Locations

A reference is a location : an abstract index into the store

Syntax of values:

... and since all values are terms ...

Design Principles of Programming Languages, Spring 2025 24

