
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2025

Chapter 13: Reference
Why reference

Evaluation

Typing

Store Typings

Safety

Reference

Basic operations

─ allocation ref (operator)

─ dereferencing !

─ assignment :=

Is there any difference between the expressions of ?

─ 5 + 3;

─ r: = 8;

─ (r:=succ(!r); !r)

─ (r:=succ(!r); (r:=succ(!r); (r:=succ(!r); !r)

sequencing

Design Principles of Programming Languages, Spring 2025 3

Syntax

We added to λ→ (with Unit) syntactic forms for creating, dereferencing,

and assigning reference cells, plus a new type constructor Ref.

Evaluation

What is the value of the expression ref 0 ?

Is
r = ref 0
s = ref 0

and
r = ref 0
s = r

behave the same?

Crucial observation: evaluating ref 0 must do something ?

Specifically, evaluating ref 0 should allocate some storage and yield a

reference (or pointer) to that storage

So what is a reference?

Design Principles of Programming Languages, Spring 2025 5

The store

A reference names a location in the run-time store (also known as the

heap or just the memory)

What is the store?

─ Concretely: an array of 8-bit bytes, indexed by 32/64-bit integers

─ More abstractly: an array of values, abstracting away from the

different sizes of the runtime representations of different values

─ Even more abstractly: a partial function from locations to values

• set of store locations

Design Principles of Programming Languages, Spring 2025 6

Locations

A reference is a location, an abstract index into the store

The result of evaluating a ref expression will be a fresh location

Syntax of values:

... and since all values are terms ...

Design Principles of Programming Languages, Spring 2025 7

Syntax of Terms

Design Principles of Programming Languages, Spring 2025 8

Aside

Does this mean we are going to allow programmers to write explicit

locations in their programs??

No: This is just a modeling trick, just as intermediate results of

evaluation

− Enriching the “source language” to include some runtime structures,

we can thus continue to formalize evaluation as a relation between

source terms

Aside: If we formalize evaluation in the big-step style, then we can add

locations to the set of values (results of evaluation) without adding them

to the set of terms

Design Principles of Programming Languages, Spring 2025 9

Evaluation

The result of evaluating a term now (with references)

─ depends on the store in which it is evaluated

─ is not just a value — we must also keep track of the changes that

get made to the store

i.e., the evaluation relation should now map a term as well as a store

to a reduced term and a new store

To use the metavariable 𝜇 to range over stores

𝜇 & 𝜇′ : states of the store before & after evaluation

t | 𝜇 → t′ | 𝜇′

Design Principles of Programming Languages, Spring 2025 10

Evaluation

A term of the form ref t1

1. first evaluates inside t1 until it becomes a value ...

2. then evaluate ref itself, chooses (allocates) a fresh location 𝑙,
augments the store with a binding from 𝑙 to v1 , and returns 𝑙 :

Design Principles of Programming Languages, Spring 2025 11

Evaluation

A term !t1 first evaluates in t1 until it becomes a value...

... and then

1. looks up this value (which must be a location, if the original term

was well typed) and

2. returns its contents in the current store

Design Principles of Programming Languages, Spring 2025 12

Evaluation

An assignment 𝑡1 ≔ 𝑡2 first evaluates 𝑡1 and 𝑡2 in order until they

become values ...

... and then returns unit and updates the store:

Design Principles of Programming Languages, Spring 2025 13

Evaluation

Evaluation rules for function abstraction and application are

augmented with stores, but don’t do anything with them directly

Design Principles of Programming Languages, Spring 2025 14

Aside

Garbage Collection

Note that we are not modeling garbage collection — the store just

grows without bound

It may not be problematic for most theoretical purposes, whereas it is

clear that for practical purposes some form of deallocation of unused

storage must be provided

Pointer Arithmetic

p++;

Design Principles of Programming Languages, Spring 2025 15

Typing rules

• type system

─ a set of rules that assigns a property called type to the various “constructs”

of a computer program, such as

─ variables, expressions, functions or modules

Design Principles of Programming Languages, Spring 2025 50

Store Typing

Typing Locations

Question: What is the type of a location?

Answer: Depends on the contents of the store!

e.g,

• in the store (𝑙1 ⟼unit, 𝑙2 ⟼unit) ,

the term ! 𝑙2 is evaluated to unit, having type Unit

• in the store (𝑙1 ⟼unit, 𝑙2 ⟼ λx: Unit. x),

the term ! 𝑙2 has type Unit → Unit

Design Principles of Programming Languages, Spring 2025 17

Typing Locations — first try

Roughly, to find the type of a location 𝑙, first look up the current contents

of 𝑙 in the store, and calculate the type 𝑇1 of the contents:

More precisely, to make the type of a term depend on the store

(keeping a consistent state), we should change the typing relation from

three-place to :

i.e., typing is now a four-place relation (about contexts, stores, terms,

and types), though the store is a part of the context ……

Design Principles of Programming Languages, Spring 2025 18

Problems #1

However, this rule is not completely satisfactory, and is rather inefficient.

─ it can make typing derivations very large (if a location appears

many times in a term) !

─ e.g.,

then how big is the typing derivation for ! 𝑙5?

𝜇 = (𝑙1 ↦ λx: Nat. 999,
𝑙2 ↦ λx: Nat. (! 𝑙1) x,
𝑙3 ↦ λx: Nat. (! 𝑙2) x,
𝑙4 ↦ λx: Nat. (! 𝑙3) x,
𝑙5 ↦ λx: Nat. (! 𝑙4) x),

Design Principles of Programming Languages, Spring 2025 19

Problems #2

But wait... it gets worse if the store contains a cycle.

Suppose

how big is the typing derivation for ! 𝑙2?

Calculating a type for 𝑙2 requires finding the type of 𝑙1, which in turn

involves 𝑙2

𝜇 = (𝑙1 ↦ λx: Nat. (! 𝑙2) x,
𝑙2 ↦ λx: Nat. (! 𝑙1) x)) ,

Design Principles of Programming Languages, Spring 2025 20

Why?

What leads to the problems?

Our typing rule for locations requires us to recalculate the type of a

location every time it’s mentioned in a term, which should not be

necessary

In fact, once a location is first created, the type of the initial value is

known, and the type will be kept even if the values can be changed

Design Principles of Programming Languages, Spring 2025 21

Store Typing

Observation:

The typing rules we have chosen for references guarantee that a

given location in the store is always used to hold values of the same

type

These intended types can be collected into a store typing:

— a partial function from locations to types

Design Principles of Programming Languages, Spring 2025 22

Store Typing

E.g., for

A reasonable store typing would be

𝜇 = (𝑙1 ↦ λx: Nat. 999,
𝑙2 ↦ λx: Nat. (! 𝑙1) x,
𝑙3 ↦ λx: Nat. (! 𝑙2) x,
𝑙4 ↦ λx: Nat. (! 𝑙3) x,
𝑙5 ↦ λx: Nat. (! 𝑙4) x) ,

Design Principles of Programming Languages, Spring 2025 23

Store Typing

Now, suppose we are given a store typing Σ describing the store 𝜇 in

which we intend to evaluate some term t.

Then we can use Σ to look up the types of locations in t instead of

calculating them from the values in 𝜇

i.e., typing is now a four-place relation on contexts, store typings, terms,

and types.

Proviso: the typing rules accurately predict the results of evaluation
only if the concrete store used during evaluation actually conforms to
the store typing.
Design Principles of Programming Languages, Spring 2025 24

Final typing rules

Design Principles of Programming Languages, Spring 2025 25

Store Typing

Where do these store typings come from?

When we first typecheck a program, there will be no explicit locations,

so we can use an empty store typing, since the locations arise only in

terms that are the intermediate results of evaluation

So, when a new location is created during evaluation,

we can observe the type of v1 and extend the “current store typing”

appropriately.

Design Principles of Programming Languages, Spring 2025 26

Store Typing

As evaluation proceeds and new locations are created, the store typing

is extended by looking at the type of the initial values being placed in

newly allocated cells

 only records the association

between

already-allocated storage cells and

their types

Design Principles of Programming Languages, Spring 2025 27

Safety
Coherence between

the statics and the dynamics

Well-formed programs are well-behaved

when executed

Preservation

the steps of evaluation

preserve typing

Preservation

How to express the statement of preservation?

First attempt: just add stores and store typings in the appropriate
places

Theorem(first try): if Γ | Σ ⊢ t: T and t 𝜇 ⟶ t′ 𝜇′ ,

then Γ | Σ ⊢ t′: T

Right??

Wrong! Why ?

Here Σ and 𝜇 are not constrained to have anything to do with
each other!

Exercise: Construct an example that breaks this statement of
preservation
Design Principles of Programming Languages, Spring 2025 30

Preservation

Definition: A store 𝜇 is said to be well typed with respect to a typing

context Γ and a store typing Σ, written Γ | Σ ⊢ 𝜇, if 𝑑𝑜𝑚 𝜇 = 𝑑𝑜𝑚 Σ and

Γ | Σ ⊢ 𝜇 𝑙 : Σ 𝑙 for every l ∈ 𝑑𝑜𝑚 𝜇

Theorem (snd try) : if

Γ | Σ ⊢ t: T
t 𝜇 ⟶ t′ 𝜇′
Γ | Σ ⊢ 𝜇

then Γ | Σ ⊢ t′: T

Right this time?

Still wrong !

Why? Where? (E-REFV）13.5.2

Design Principles of Programming Languages, Spring 2025 31

Preservation

Creation of a new reference cell ...

𝑙 ∉ 𝑑𝑜𝑚 𝜇

ref v1 𝜇 ⟶ 𝑙 (𝜇, 𝑙 ↦v1)
(E-REFV)

... breaks the correspondence between the store typing and the store.

Since the store can grow during evaluation:

Creation of a new reference cell yields a store with a larger domain

than the initial one, making the conclusion incorrect: if 𝜇′ includes a

binding for a fresh location 𝑙 , then 𝑙 cann’t be in the domain of Σ , and

it will not be the case that 𝑡′ is typable under 𝚺

Design Principles of Programming Languages, Spring 2025 32

Preservation

Theorem: if

Γ | Σ ⊢ t: T

Γ | Σ ⊢ 𝜇

t | 𝜇 ⟶ t′| μ′

then, for some Σ′ ⊇ Σ,

Γ | Σ′ ⊢ t′: T

Γ | Σ′ ⊢ 𝜇′.

A correct version.

What is Σ′ ?

Proof: Easy extension of the preservation proof for 𝜆→ with several lemmas.

Design Principles of Programming Languages, Spring 2025 33

Preservation

Lemma (Substitution)

if Γ, x: S | Σ ⊢ 𝑡: T and Γ | Σ ⊢ s: S, then Γ | Σ ⊢ x ↦ s t ∶ T

Lemma (updating contents of a cell don’t change the overall type of the

store） : if

Γ | Σ ⊢ 𝜇

Σ 𝑙 = T

Γ | Σ ⊢ 𝑣: T

then Γ | Σ ⊢ [𝑙 ↦ 𝑣]𝜇

Lemma (preserving type in the extended store)

if Γ | Σ ⊢ t: T and Σ′ ⊇ Σ then Γ | Σ′ ⊢ t: T

Design Principles of Programming Languages, Spring 2025 34

Progress

well-typed expressions are

either values

or can be further evaluated

Progress

Theorem:

Suppose t is a closed, well-typed term

(i.e.,  | Σ ⊢ t: T for some T and Σ)

then either t is a value or else, for any store 𝜇 such that Γ| Σ ⊢ 𝜇, there

is some term t′ and store 𝜇′ with

t | 𝜇 ⟶ t′ | 𝜇′

Design Principles of Programming Languages, Spring 2025 36

Safety

• Preservation and progress together constitute the proof of safety

─ progress theorem ensures that well-typed expressions don’t get

stuck in an ill-defined state, and

─ preservation theorem ensures that if a step is a taken the result

remains well-typed (with the same type).

• These two parts ensure the statics and dynamics are coherent, and

that no ill-defined states can ever be encountered while evaluating a

well-typed expression

Design Principles of Programming Languages, Spring 2025 37

In summary …

Syntax

We added to λ→ (with Unit) syntactic forms for creating, dereferencing,

and assigning reference cells, plus a new type constructor Ref.

Design Principles of Programming Languages, Spring 2025 39

Evaluation

Evaluation relation: t | μ ⟶ t′ | μ′

Design Principles of Programming Languages, Spring 2025 40

Typing

Typing becomes a four-place relation: Γ | Σ ⊢ t ∶ T

Design Principles of Programming Languages, Spring 2025 41

Preservation

Theorem: if

Γ | Σ ⊢ t: T

Γ | Σ ⊢ 𝜇

t | 𝜇 ⟶ t′| μ′

then, for some Σ′ ⊇ Σ,

Γ | Σ′ ⊢ t′: T

Γ | Σ′ ⊢ 𝜇′.

Design Principles of Programming Languages, Spring 2025 42

Progress

Theorem: Suppose t is a closed, well-typed term (that is,

∅ | Σ ⊢ t: T for some T and Σ). Then either t is a value or else, for any

store 𝜇 such that ∅ | Σ ⊢ 𝜇, there is some term t′ and store 𝜇′ with

t | 𝜇 ⟶ t′ | 𝜇′

Design Principles of Programming Languages, Spring 2025 43

Others …

Arrays

Fix-sized vectors of values.

All of the values must have the same type, and the fields in the array

can be accessed and modified.

e.g., arrays can be created in Ocaml, as

[|e1; … ; en|]

let a = [|1;3;5;7;9|];;

val a : int array = [|1;3;5;7;9|]

#a;;

-: int array = [|1;3;5;7;9|]

Design Principles of Programming Languages, Spring 2025 45

Arrays

let f a =

for i = 1 to Array.length a - 1 do

let val_i = a.(i) in

let j = ref i in

while !j > 0 && val_i < a.(!j - 1) do

a.(!j) <- a.(!j - 1);

j := !j - 1

done;

a.(!j) <- val_i

done;;

Design Principles of Programming Languages, Spring 2025 46

Recursion via references

Indeed, we can define arbitrary recursive functions using references

1. Allocate a ref cell and initialize it with a dummy function of the appropriate type:

fact𝑟𝑒𝑓 = ref (λn: Nat. 0)

2. Define the body of the function we are interested in, using the contents of the reference

cell for making recursive calls:

fact𝑏𝑜𝑑𝑦 =

λn: Nat.

if iszero n then 1 else times n ((! fact𝑟𝑒𝑓)(pred n))

3. “Backpatch” by storing the real body into the reference cell:

fact𝑟𝑒𝑓 ∶= fact𝑏𝑜𝑑𝑦

4. Extract the contents of the reference cell and use it as desired:

fact = ! fact𝑟𝑒𝑓

Design Principles of Programming Languages, Spring 2025 47

Nontermination via references

There are well-typed terms in this system that are not strongly

normalizing.

For example:

t1 = λr: Ref Unit → Unit . (r ≔ λx: Unit. ! r x ; ! r unit);

t2 = ref λx: Unit. x ;

Applying t1 to t2 yields a (well-typed) divergent term.

Design Principles of Programming Languages, Spring 2025 48

Homework☺

• Read chapter 13

• Read and chew over the codes of fullref.

• HW: 13.1.2 & 13.3.1

Design Principles of Programming Languages, Spring 2025 49

