
编程语言的设计原理
Design Principles of  

Programming Languages

Haiyan Zhao,  Di Wang

赵海燕，王迪

Peking University, Spring Term 2025



Part III

Chap 15:   Subtyping 

Subsumption

Subtype relation

Properties of subtyping and typing

Subtyping and other features 

Intersection and union types 



Subtyping



Motivation

With the usual typing rule for applications

is the term

right?

It is not well typed

Design Principles of Programming Languages, Spring 2025 4



Motivation

With the usual typing rule for applications

the term

is not well typed.

This is silly: what we’re doing is passing the function a better argument

than it needs

Design Principles of Programming Languages, Spring 2025 5



Subsumption

More generally: some types are better than others, in the sense that a

value of one can always safely be used where a value of the other is

expected

We can formalize this intuition by introducing:

Principle of safe substitution

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of type S

can also be regarded as having type T, i.e.,

Design Principles of Programming Languages, Spring 2025 6



Subtyping

Intuitions:     S <: T means ...

“An element of S may safely be used wherever an element of T is 

expected”     (Official)

• S is “better than” T

• S is a subset of T

• S is more informative / richer than T

Design Principles of Programming Languages, Spring 2025 7



Example 

with subtyping between record types, so that, for example

{𝑥: 𝑁𝑎𝑡, 𝑦: 𝑁𝑎𝑡} <: {𝑥:𝑁𝑎𝑡}

by subsumption

⊢ {𝑥 = 0, 𝑦 = 1} ∶ {𝑥: 𝑁𝑎𝑡}

and hence

is well typed.

Back to the example：

Design Principles of Programming Languages, Spring 2025 8



Subtype Relation



The Subtype Relation: Top

It is convenient to have a type that is a

supertype of every type

We introduce a new type constant Top, plus a rule that makes Top a

maximum element of the subtype relation

i.e,

Cf.  Object in Java.

Design Principles of Programming Languages, Spring 2025 10



Subtype Relation: General rules

• Following directly from the intuition of safe substitution,  

Subtyping should be reflexive, and transitive



Subtyping 

for 

Record Types



The Subtype Relation: Records

“Width subtyping” :  forgetting fields on the right 

(S-RcdWidth)

Intuition:     

{𝑥: 𝑁𝑎𝑡} is the type of all records with at least a numeric 𝑥 field 

e.g., 

{x = 5} ;  {x = 10} 

{x = 5, y=12} ;  {x =10, a = true, b = 2}

𝑙𝑖: 𝑇𝑖
𝑖∈1..𝑛+𝑘 <: 𝑙𝑖: 𝑇𝑖

𝑖∈1..𝑛

Design Principles of Programming Languages, Spring 2025 13

The supertype has fewer fields than its subtypes



The Subtype Relation: Records

“Width subtyping”   (forgetting fields on the right):

(S-RcdWidth)

Intuition:

• Note that the record type with more fields is a subtype of the record
type with fewer fields

• Reason: the type with more fields places stronger constraints on
values, so it describes fewer values

𝑙𝑖: 𝑇𝑖
𝑖∈1..𝑛+𝑘 <: 𝑙𝑖: 𝑇𝑖

𝑖∈1..𝑛

Design Principles of Programming Languages, Spring 2025 14

This rule applies only to record types where the common fields are 

identical



The Subtype Relation: Records

“Depth subtyping” within fields:

The types of individual fields may change, as long as the type of each

corresponding field in the two records are in the subtype relation

Design Principles of Programming Languages, Spring 2025 15



Examples

• We can use these rules to infer the subtype relation between given 

types

Design Principles of Programming Languages, Spring 2025 16



Examples

We can also use S-RcdDepth to refine the type of just a single record

field (instead of refining every field), by using a so called S-REFL to

obtain trivial subtyping derivations for other fields.

𝑎 ∶𝑁𝑎𝑡, 𝑏 ∶𝑁𝑎𝑡 <: 𝑎 ∶𝑁𝑎𝑡
S−RCDWIDTH

𝑚 ∶𝑁𝑎𝑡 <: 𝑚 ∶𝑁𝑎𝑡
S−REFL

𝑥 ∶ 𝑎:𝑁𝑎𝑡, 𝑏:𝑁𝑎𝑡 , 𝑦 ∶ 𝑚:𝑁𝑎𝑡 <: {𝑥 ∶ 𝑎 ∶𝑁𝑎𝑡 , 𝑦 ∶ 𝑚 ∶𝑁𝑎𝑡 }
S−RcdDepth

Design Principles of Programming Languages, Spring 2025 17



Order of fields in Records

The order of fields in a record doesn’t make any difference to how we

can safely use it, since the only thing that we can do with records

(projecting their fields) is insensitive to the order of fields

S-RcdPerm tells us that 

{c:Top, b: Bool, a: Nat}  <: {a: Nat, b: Bool, c:Top} 

and

{a: Nat, b: Bool, c:Top}  <: {c:Top, b: Bool, a: Nat} 

Design Principles of Programming Languages, Spring 2025 18



The Subtype Relation: Records

Permutation of fields:

Using S-RcdPerm together with S-RcdWidth & S-Trans allows us to

drop arbitrary fields within records

Design Principles of Programming Languages, Spring 2025 19



Variations

Real languages often choose not to adopt all of these record subtyping

rules, e.g., in Java,

─ A subclass may not change the argument or result types of a

method of its superclass (i.e., no depth subtyping)

─ Each class has just one superclass (“single inheritance” of classes)

each class member (field or method) can be assigned a single index,

adding new indices “on the right” as more members are added in

subclasses (i.e., no permutation for classes)

─ A class may implement multiple interfaces (“multiple inheritance” of

interfaces) ( i.e., permutation is allowed for interfaces)

Design Principles of Programming Languages, Spring 2025 20



Recap for subtyping

Design Principles of Programming Languages, Spring 2025 21



Subtyping

for 

functional types



The Subtype Relation:  Arrow types

A high-order language, functions can be passed as arguments to other 

functions

Design Principles of Programming Languages, Spring 2025 23



The Subtype Relation: Arrow types

Note the order of 𝑇1 and 𝑆1 in the first premise.

The subtype relation is

─ contravariant in the left-hand sides of arrows

─ covariant in the right-hand sides of arrows

Design Principles of Programming Languages, Spring 2025 24



The Subtype Relation: Arrow types

Intuition: if we have a function 𝐟 of type S1 ⟶ S2,

1. 𝐟 accepts elements of type S1; clearly, 𝐟 will also accept elements of

any subtype T1 of S1

2. the type of 𝐟 also tells us that it returns elements of type S2; then

these results can be viewed as belonging to any supertype T2 of S2

i.e., any function 𝐟 of type S1 ⟶ S2 can also be viewed as having type

T1 ⟶ T2

Design Principles of Programming Languages, Spring 2025 25



Recap for subtyping

Design Principles of Programming Languages, Spring 2025 26



Subtype Relation

Design Principles of Programming Languages, Spring 2025 27

A subtyping is a binary relation between types that is closed under the

following rules



Properties of Subtyping



Safety

Statements of progress and preservation theorems are unchanged

from λ→.

However, Proofs become a bit more involved, because the typing

relation is no longer syntax directed.

Given a derivation, we don’t always know what rule was used in the last

step.

e.g., the following rule could appear anywhere

Design Principles of Programming Languages, Spring 2025 29



Aside: Syntax-directed rules

When we say a set of rules is syntax-directed we mean two things:

1. There is exactly one rule in the set that applies to each syntactic

form. (We can tell by the syntax of a term which rule to use.)

─ e.g., In order to derive a type for t1 t2, we must use T-App.

2. We don't have to “guess" an input (or output) for any rule.

─ e.g., To derive a type for t1 t2, we need to derive a type for t1 and

a type for t2.

Design Principles of Programming Languages, Spring 2025 30



An Inversion Lemma for subtyping
Lemma: If   U <: T1 ⟶ T2,   then U has the form U1 ⟶ U2, with  

T1 <: U1 and  U2 <: T2.

Proof:   By induction on subtyping derivations.

Case S-ARROW: U = U1 ⟶ U2 T1 <: U1 ,  U2 <: T2

Immediate.

Case S-REFL: U = T1 ⟶ T2

– By S-REFL (twice), T1 <: T1 and T2 <: T2, as required.

Case S-TRANS: U <: W W <: T1 ⟶ T2

― Applying the IH to the second subderivation, we find that W has the form
W1 ⟶ W2, with T1 <: W1 and W2 <: T2.

― Now the IH applies again (to the first subderivation), telling us that U has
the form U1 ⟶ U2 , with W1 <: U1 and U2 <: W2.

― By S-TRANS, T1 <: U1 , and, by S-TRANS again, U2 <: T2, as required.

Design Principles of Programming Languages, Spring 2025 31



Inversion Lemma for Typing

Lemma: if Γ ⊢ λx: S1. s2: T1 ⟶ T2, then

T1 <: S1 and Γ, x: S1 ⊢ s2: T2

Proof: Induction on typing derivations.

Case T-ABS: T1 = S1, T2 = S2 Γ, x: S1 ⊢ s2: S2

Case T-SUB: Γ ⊢ λx:S1. s2: U U: T1⟶T2

― By the subtyping inversion lemma, U has the form of U1 ⟶ U2, with T1 <: U1 and

U2 <: T2.

― The IH now applies, yielding U1 <: S1 and Γ, x:S1 ⊢ s2 : U2.

― From U1 <: S1 and T1 <: U1, rule S-Trans gives T1 <: S1.

― From Γ, x:S1 ⊢ s2 : U2 and U2 <: T2, rule T-Sub gives Γ, x: S1 ⊢ s2: T2 , thus

we are done

Design Principles of Programming Languages, Spring 2025 32



Preservation

Theorem: If Γ ⊢ t: T 𝑎𝑛𝑑 t ⟶ t’, 𝑡ℎ𝑒𝑛 Γ ⊢ t′ ∶ T.

Proof:  By induction on typing derivations.

Which cases are likely to be hard ?

Design Principles of Programming Languages, Spring 2025 33



Preservation - Subsumption case

Case T-SUB: t ∶ S S <: T

By the induction hypothesis, Γ ⊢ t′ ∶ S.  

By T-SUB, Γ ⊢ t′: T.

Not hard!

Design Principles of Programming Languages, Spring 2025 34



Preservation - Application case

Case T-APP :

t = t1 t2 Γ ⊢ t1: T11 ⟶ T12 Γ ⊢ t2: T11 T = T12

By the inversion lemma for evaluation, there are

three rules

by which t ⟶ t′ can be derived:

E-APP1,E-APP2, and E-APPABS.

Proceed by cases

Design Principles of Programming Languages, Spring 2025 35



Preservation - Application case

Case T-APP :

t = t1 t2 Γ ⊢ t1: T11 ⟶ T12 Γ ⊢ t2: T11 T = T12

Subcase E-APP1 : t1⟶ t′1 t′ = t′1 t2

The result follows from the induction hypothesis and T-APP

Design Principles of Programming Languages, Spring 2025 36



Preservation - Application case

Subcase E-APP2 :   t1 = v1 t2⟶ t′2 t′ = v1 t′2

Similar.

Case T-APP :

t = t1 t2 Γ ⊢ t1: T11 ⟶ T12 Γ ⊢ t2: T11 T = T12

Design Principles of Programming Languages, Spring 2025 37



Preservation - Application case
Case T-APP :

t = t1 t2 Γ ⊢ t1: T11 ⟶ T12 Γ ⊢ t2: T11 T = T12
Subcase E-APPABS : 

t1 = λx: S11. t12 t2= v2 t′ = [x ↦ v2] t12

by the inversion lemma for the typing relation ...

T11 <: 𝑆11 and   Γ, x: S11 ⊢ t12: T12

By using T-SUB, Γ ⊢ t2: S11

by the substitution lemma,  Γ ⊢ t′: T12

Design Principles of Programming Languages, Spring 2025 38



Progress

Lemma for Canonical Forms

1. If v is a closed value of type T1 ⟶ T2, then v has the form λx: S1. t2. 

2. If v is a closed value of type 𝑙𝑖: 𝑇𝑖
𝑖∈1..𝑛 ,  then v has the form 

𝑘𝑗 = 𝑣𝑗
𝑗∈1..𝑚

with   𝑙𝑖
𝑖∈1..𝑛  𝑘𝑎

𝑎∈1..𝑚

• Possible shapes of values belonging to arrow and record types.

• Based on this Canonical Forms Lemma, we can still has the progress 

theorem and its proof quite close to that in the simply typed lambda-

calculus

Design Principles of Programming Languages, Spring 2025 39



Subtyping with 

Other Features



Ascription and Casting

Ordinary ascription:

(T) t

up-cast :  a term is ascribed a supertype of the type

down-cast:  to assign types to terms that the typechecker cannot derive 

statically, and need to involve dynamic type-testing

Design Principles of Programming Languages, Spring 2025 41

In languages with subtyping (e.g., Java/ C++), it is often called casting, 

and written as 



Ascription and Casting

Ordinary ascription:

Casting (cf. Java):

Design Principles of Programming Languages, Spring 2025 42



Subtyping and Variants

Design Principles of Programming Languages, Spring 2025 43



Subtyping and Lists

Design Principles of Programming Languages, Spring 2025 44

List is a covariant type constructor



Subtyping and References

Ref is not a covariant (nor a contravariant ) type constructor, but an 

invariant

Design Principles of Programming Languages, Spring 2025 45



Subtyping and References

Ref is not a covariant (nor a contravariant ) type constructor.

Why?

─ When a reference is read, the context expects a T1, so if S1<: T1
then an S1 is ok.

─ When a reference is written, the context provides a T1 and if the

actual type of the reference is Ref S1, someone else may use the T1
as an S1. So we need T1 <: S1.

Design Principles of Programming Languages, Spring 2025 46



References again

Observation:  a value of type 𝑅𝑒𝑓 𝑇 can be used in two different ways: 

─ as a source for values of type T , and 

─ as a sink for values of type T

Design Principles of Programming Languages, Spring 2025 47



References again

Observation:  a value of type 𝑅𝑒𝑓 𝑇 can be used in two different ways: 

─ as a source for values of type T , and 

─ as a sink for values of type T

Idea：Split Ref T into three parts:

─ Source T:  reference cell with “read capability”

─ Sink T:  reference cell with “write capability”

─ Ref T:  cell with both capabilities

Design Principles of Programming Languages, Spring 2025 48



Modified Typing Rules

Design Principles of Programming Languages, Spring 2025 49



Subtyping rules

Design Principles of Programming Languages, Spring 2025 50



Subtyping and Arrays

Similarly...

This is regarded (even by the Java designers) as a mistake in the 

design

Design Principles of Programming Languages, Spring 2025 51



Capabilities

Other kinds of capabilities can be treated similarly, e.g.,

─ send and receive capabilities on communication channels 

─ encrypt/decrypt capabilities of cryptographic keys 

─ ...

Design Principles of Programming Languages, Spring 2025 52



Base Types

In a full-blown language with a rich set of base types, it’s better to 

introduce primitive subtype relations among them

─ e.g., in many languages the boolean values true and false are actually 

represented by the numbers 1 and 0.

─ Bool <: Nat

─ if b then 5 else 0 => 5*b

Design Principles of Programming Languages, Spring 2025 53



Intersection and Union 

Types



Intersection Types

The inhabitants of  T1 ∧ T2 are terms belonging to both T1 and T2 — i.e., 

T1 ∧ T2 is an order-theoretic  meet  (greatest lower bound ) of T1 and T2.

Design Principles of Programming Languages, Spring 2025 55



Intersection Types

Intersection types permit a very flexible form of finitary overloading.

This form of overloading is extremely powerful.

Every strongly normalizing untyped lambda-term can be typed in the simply

typed lambda-calculus with intersection types (a term is typable iff its evaluation

terminates)

type reconstruction problem is undecidable (cf. ch22)

Intersection types have not been used much in language designs (too

powerful!), but are being intensively investigated as type systems for

intermediate languages in highly optimizing compilers (cf. Church

project).

Design Principles of Programming Languages, Spring 2025 56



Union types

Union types are also useful.

T1 ∨ T2 is an untagged (non-disjoint) union of T1 and T2.

No tags: no case construct. The only operations we can safely perform

on elements of T1 ∨ T2 are ones that make sense for both T1 and T2.

Note well: untagged union types in C are a source of type safety

violations precisely because they ignores this restriction, allowing any

operation on an element of T1 ∨ T2 that makes sense for either T1 or T2.

Union types are being used recently in type systems for XML

processing languages (cf. Xduce, Xtatic).

Design Principles of Programming Languages, Spring 2025 57



Bottom Type

Can we have a type that is a subtype of every type ?

Sure. a type constant Bot, plus a rule that makes Bot a minimal element

of the subtype relation

Design Principles of Programming Languages, Spring 2025 58

Bot is empty—there are no closed values of type Bot.

The emptiness of Bot provides a very convenient way of expressing the 

fact that some operations are not intended to return



Varieties of Polymorphism

• Parametric polymorphism (ML-style)

• Subtype polymorphism (OO-style)

• Ad-hoc polymorphism (overloading)

Design Principles of Programming Languages, Spring 2025 59



HW for Chap15

• 15.2.2

• 15.3.6

Design Principles of Programming Languages, Spring 2025 60


