
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2025

Issues in Subtyping

Typing with Subsumption

Principle of safe substitution:

─ a value of one can always safely be used where a value of the

other is expected

1. a subtyping relation between types, written S <: T

2. a rule of subsumption stating that, if S <: T, then any value of type S can

also be regarded as having type T, i.e.,

Design Principles of Programming Languages, Spring 2025 3

Issues in Subtyping

For a given subtyping statement, there are multiple rules that could be

used in a derivation.

1. The conclusions of S-RcdWidth, S-RcdDepth, and S-RcdPerm overlap

with each other.

2. S-REFL and S-TRANS overlap with every other rule.

Design Principles of Programming Languages, Spring 2025 4

Syntax-directed rules

In the simply typed lambda-calculus (without subtyping), each rule can

be “read from bottom to top” in a straightforward way.

If we are given some Γ and some t of the form t1 t2, we can try to find a

type for t by

1. finding (recursively) a type for t1
2. checking that it has the form T11 ⟶ T12
3. finding (recursively) a type for t2
4. checking that it is the same as T11

Design Principles of Programming Languages, Spring 2025 5

Syntax-directed rules

The reason this works is that we can divide the “positions” of the

typing relation into input positions (i.e., Γ and t) and output

positions (T).

─ For the input positions, all metavariables appearing in the premises also

appear in the conclusion (so we can calculate inputs to the “sub-goals”

from the sub-expressions of inputs to the main goal)

─ For the output positions, all metavariables appearing in the conclusions

also appear in the premises (so we can calculate outputs from the main

goal from the outputs of the subgoals)

Design Principles of Programming Languages, Spring 2025 6

Syntax-directed sets of rules

The second important point about the simply typed lambda-calculus is

that the set of typing rules is syntax-directed:

─ For every “input ” Γ and t, there is exactly one rule that can be

used to derive typing statements involving t, e.g.,

if t is an application, then we must proceed by trying to use T-APP

─ If we succeed, then we have found a type (indeed, the unique type)

for t

─ If it fails, then we know that t is not typable

⟹ no backtracking!

Design Principles of Programming Languages, Spring 2025 7

Non-syntax-directedness of typing
When the system is extended with subtyping, both aspects of syntax-

directedness get broken.

1. The set of typing rules now includes two rules that can be used to

give a type to terms of a given shape (the old one + T-SUB)

2. Worse yet, the new rule T-SUB itself is not syntax directed: the

inputs to the left-hand sub-goal are exactly the same as the

inputs to the main goal

Hence, if we translate the typing rules naively into a typechecking

function, the case corresponding to T-SUB would cause divergence
Design Principles of Programming Languages, Spring 2025 8

Non-syntax-directedness of subtyping

Moreover, the subtyping relation is not syntax directed either

1. There are lots of ways to derive a given subtyping statement

(∵ 8.2.4 /9.3.3 [uniqueness of types] ×)

2. The transitivity rule

is badly non-syntax-directed: the premises contain a metavariable (in

an “input position”) that does not appear at all in the conclusion.

To implement this rule naively, we have to guess a value for U!

Design Principles of Programming Languages, Spring 2025 9

What to do?

Turn the declarative version of subtyping into the algorithmic version

The problem was that

we don't have an algorithm to decide when S <: T or Γ ⊢ t ∶ T

Both sets of rules are not syntax-directed

Design Principles of Programming Languages, Spring 2025 10

Chap 16

Metatheory of Subtyping

Algorithmic Subtyping

Algorithmic Typing

Joins and Meets

Developing

an algorithmic

subtyping relation

Algorithmic Subtyping

What to do

How do we change the rules deriving S <: T to be syntax-directed?

There are lots of ways to derive a given subtyping statement S <: T.

The general idea is to change this system so that there is only one way

to derive it.

Design Principles of Programming Languages, Spring 2025 14

Step 1: simplify record subtyping

Idea: combine all three record subtyping rules into one “macro rule” that

captures all of their effects

Design Principles of Programming Languages, Spring 2025 15

Lemma 16.1.1: If S <: T is derivable from the subtyping rules including

S-RcdDepth, S-Rcd-Width, and S-Rcd-Perm (but not S-Rcd), then it

can also be derived using S-Rcd (and not S-RcdDepth, S-Rcd-Width,

or S-Rcd-Perm), and vice versa.

Simpler subtype relation

Design Principles of Programming Languages, Spring 2025 16

Step 2: Get rid of reflexivity

Observation: S-REFL is unnecessary.

Lemma 16.1.2: S <: S can be derived for every type S without using

S-REFL.

Design Principles of Programming Languages, Spring 2025 17

Even simpler subtype relation

Design Principles of Programming Languages, Spring 2025 18

Step 3: Get rid of transitivity

Observation: S-Trans is unnecessary.

Lemma 16.1.2: If S <: T can be derived, then it can be derived without

using S-Trans.

Design Principles of Programming Languages, Spring 2025 19

Even simpler subtype relation

Design Principles of Programming Languages, Spring 2025 20

“Algorithmic” subtype relation

Definition: The algorithmic subtyping relation is the least relation on

types closed under the following 3 rules

Design Principles of Programming Languages, Spring 2025 21

Soundness and completeness

Theorem[16.1.5]: S <: T iff ↦ S <: T

Terminology:

─ The algorithmic presentation of subtyping is sound with respect to

the original, if ↦ S <: T implies S <: T

(Everything validated by the algorithm is actually true)

─ The algorithmic presentation of subtyping is complete with respect to

the original, if S <: T implies ↦ S <: T

(Everything true is validated by the algorithm)

Design Principles of Programming Languages, Spring 2025 22

Subtyping Algorithm

subtype(S, T) =

if T = Top, then true

else if S = S1 ⟶ S2 and T = T1 ⟶ T2

then 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 T1, S1 ∧ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S2, T2)

else if S = {kj: Sj
j∈1..m

} and T = {li: Ti
i∈1..𝑛}

then {li
i∈1..n} ⊆ {kj

j∈1..m} ∧

for all 𝑖 ∈ 1. . 𝑛 there is some 𝑗 ∈ 1. .𝑚 with kj = li and 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(Sj, Ti)

else false.

Design Principles of Programming Languages, Spring 2025 23

Decision Procedures

Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total function 𝑝

from 𝑈 to {true, false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff 𝑢 ∈ 𝑅.

Is our subtype function a decision procedure?

subtype is just an implementation of the algorithmic subtyping rules, we
have

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑡𝑟𝑢𝑒, then ↦ S <: T

hence, by soundness of the algorithmic rules, S <: T

2. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑓𝑎𝑙𝑠𝑒, then not ↦ S <: T

hence, by completeness of the algorithmic rules, not S <: T

Q: What’s missing?

Design Principles of Programming Languages, Spring 2025 24

Decision Procedures

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic subtyping

rules, we have

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑡𝑟𝑢𝑒, then ↦ S <: T

(hence, by soundness of the algorithmic rules, S <: T)

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑓𝑎𝑙𝑠𝑒, then not ↦ S <: T

(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

Design Principles of Programming Languages, Spring 2025 25

Decision Procedures

Is our subtype function a decision procedure?

Since subtype is just an implementation of the algorithmic subtyping

rules, we have

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑡𝑟𝑢𝑒, then ↦ S <: T

(hence, by soundness of the algorithmic rules, S <: T)

1. if 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S, T) = 𝑓𝑎𝑙𝑠𝑒, then not ↦ S <: T

(hence, by completeness of the algorithmic rules, not S <: T)

Q: What’s missing?

A: How do we know that subtype is a total function?

Prove it!

Design Principles of Programming Languages, Spring 2025 26

Decision Procedures

Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total function 𝑝

from 𝑈 to {true, false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff 𝑢 ∈ 𝑅.

Example:

𝑈 = 1, 2, 3

𝑅 = {(1, 2), (2, 3)}

Design Principles of Programming Languages, Spring 2025 27

Decision Procedures

Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total function 𝑝

from 𝑈 to {true, false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff 𝑢 ∈ 𝑅.

Example:

𝑈 = 1, 2, 3

𝑅 = {(1, 2), (2, 3)}

The function 𝑝′ whose graph is

{((1, 2), true), ((2, 3), true)}

is not a decision function for 𝑅

Design Principles of Programming Languages, Spring 2025 28

Decision Procedures

Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total function 𝑝

from 𝑈 to {true, false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff 𝑢 ∈ 𝑅.

Example:

𝑈 = {1, 2, 3}

𝑅 = {(1, 2), (2, 3)}

The function 𝑝′′ whose graph is

{((1, 2), true), ((2, 3), true), ((1, 3), false)}

is also not a decision function for 𝑅

Design Principles of Programming Languages, Spring 2025 29

Decision Procedures

Recall: A decision procedure for a relation 𝑅 ⊆ 𝑈 is a total function 𝑝 from 𝑈 to {true,
false} such that 𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff 𝑢 ∈ 𝑅.

Example:

𝑈 = 1, 2, 3

𝑅 = {(1, 2), (2, 3)}

The function 𝑝 whose graph is

{ ((1, 2), true), ((2, 3), true),

((1, 1), false), ((1, 3), false),

((2, 1), false), ((2, 2), false),

((3, 1), false), ((3, 2), false), ((3, 3), false)}

is a decision function for 𝑅

Design Principles of Programming Languages, Spring 2025 30

Decision Procedures (take 2)

We want a decision procedure to be a procedure.

A decision procedure for a relation 𝑅 ⊆ 𝑈 is a computable total function

𝑝 from 𝑈 to {true, false} such that

𝑝(𝑢) = 𝑡𝑟𝑢𝑒 iff u ∈ 𝑅.

Design Principles of Programming Languages, Spring 2025 31

Example

𝑈 = {1, 2, 3}

𝑅 = {(1, 2), (2, 3)}

The function

𝑝(𝑥, 𝑦) = 𝑖𝑓 𝑥 = 2 𝑎𝑛𝑑 𝑦 = 3 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑥 = 1 𝑎𝑛𝑑 𝑦 = 2 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒

𝑒𝑙𝑠𝑒 𝑓𝑎𝑙𝑠𝑒

whose graph is

{ ((1, 2), true), ((2, 3), true),

((1, 1), false), ((1, 3), false),

((2, 1), false), ((2, 2), false),

((3, 1), false), ((3, 2), false), ((3, 3), false)}

is a decision procedure for 𝑅.

Design Principles of Programming Languages, Spring 2025 32

Example

𝑈 = 1, 2, 3

𝑅 = {(1, 2), (2, 3)}

The recursively defined partial function

𝑝(𝑥, 𝑦) = 𝑖𝑓 𝑥 = 2 𝑎𝑛𝑑 𝑦 = 3 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑥 = 1 𝑎𝑛𝑑 𝑦 = 2 𝑡ℎ𝑒𝑛 𝑡𝑟𝑢𝑒

𝑒𝑙𝑠𝑒 𝑖𝑓 𝑥 = 1 𝑎𝑛𝑑 𝑦 = 3 𝑡ℎ𝑒𝑛 𝑓𝑎𝑙𝑠𝑒

𝑒𝑙𝑠𝑒 𝑝(𝑥, 𝑦)

whose graph is

{ ((1, 2), true), ((2, 3), true), ((1, 3), false)}

is not a decision procedure for 𝑅.

Design Principles of Programming Languages, Spring 2025 33

Subtyping Algorithm

The following recursively defined total function is a decision procedure

for the subtype relation:

subtype(S, T) =

if T = Top then true

else if S = S1 ⟶ S2 and T = T1 ⟶ T2

then 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 T1, S1 ∧ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S2, T2)

else if S = {kj: Sj
j∈1..m

} and T = {li: Ti
i∈1..𝑛}

then {li
i∈1..n} ⊆ {kj

j∈1..m} ∧

for all 𝑖 ∈ 1. . 𝑛 there is some 𝑗 ∈ 1. .𝑚 with kj = li and 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(Sj, Ti)

else false.

Design Principles of Programming Languages, Spring 2025 34

Subtyping Algorithm

This recursively defined total function is a decision procedure for the

subtype relation:
subtype(S, T) =

if T = Top then true

else if S = S1 ⟶ S2 and T = T1 ⟶ T2
then 𝑠𝑢𝑏𝑡𝑦𝑝𝑒 T1, S1 ∧ 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(S2, T2)

else if S = {kj: Sj
j∈1..m

} and T = {li: Ti
i∈1..𝑛}

then {li
i∈1..n} ⊆ {kj

j∈1..m} ∧

for all 𝑖 ∈ 1. . 𝑛 there is some 𝑗 ∈ 1. . 𝑚 with kj = li and 𝑠𝑢𝑏𝑡𝑦𝑝𝑒(Sj, Ti)

else false.

To show this, we need to prove :

1. that it returns 𝑡𝑟𝑢𝑒 whenever S <: T, and

2. that it returns either 𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒 on all inputs

[16.1.6 Termination Proposition]

Design Principles of Programming Languages, Spring 2025 35

Algorithmic Typing

Algorithmic typing

How do we implement a type checker for the lambda-calculus with

subtyping?

Given a context Γ and a term t, how do we determine its type T, such

that Γ ⊢ t ∶ T?

Design Principles of Programming Languages, Spring 2025 37

Issue

For the typing relation, we have just one problematic rule to deal with: subsumption
rule

Q: where is this rule really needed?

For applications, e.g., the term λr: x: Nat . r. x x = 0, y = 1 is not typable
without using subsumption.

Where else??

Nowhere else!

Uses of subsumption rule to help typecheck applications are the only interesting
ones（where subsumption plays a crucial role in typing)

Design Principles of Programming Languages, Spring 2025 38

Plan

1. Investigate how subsumption is used in typing derivations by looking

at examples of how it can be “pushed through” other rules;

2. Use the intuitions gained from these examples to design a new,

algorithmic typing relation that

─ Omits subsumption;

─ Compensates for its absence by enriching the application rule;

3. Show that the algorithmic typing relation is essentially equivalent to

the original, declarative one.

Design Principles of Programming Languages, Spring 2025 39

Example (T-ABS)

becomes

Design Principles of Programming Languages, Spring 2025 40

Intuitions

These examples show that we do not need to T-SUB“enable” T-ABS :

− given any typing derivation, we can construct a derivation with

the same conclusion in which T-SUB is never used immediately

before T-ABS.

What about 𝑇-𝐴𝑃𝑃?

We’ve already observed that T-SUB is required for typechecking

some applications

Therefore we expect to find that we cannot play the same game with

T-APP as we’ve done with T-ABS

Let’s see why.

Design Principles of Programming Languages, Spring 2025 41

Example (T−Sub with T-APP on the left)

becomes

Design Principles of Programming Languages, Spring 2025 42

Example (T−Sub with T-APP on the right)

becomes

Design Principles of Programming Languages, Spring 2025 43

Observations

We’ve seen that uses of subsumption rule can be “pushed” from one of

immediately before T -APP ’s premises to the other, but cannot be

completely eliminated

Design Principles of Programming Languages, Spring 2025 44

Example (nested uses of T-Sub)

becomes

Design Principles of Programming Languages, Spring 2025 45

Summary

What we’ve learned:

─ Uses of the T-Sub rule can be “pushed down” through typing derivations until

they encounter either

1. a use at the end of right-hand subderivations of T-App, or

2. the root of the derivation tree (the very end of the whole derivation)

─ In both cases, multiple uses of T-Sub can be coalesced into a single one.

This suggests a notion of “normal form” for typing derivations, in which

there is

─ exactly one use of T-Sub before each use of T-App,

─ one use of T-Sub at the very end of the derivation,

─ no uses of T-Sub anywhere else.

Design Principles of Programming Languages, Spring 2025 46

Algorithmic Typing

The next step is to “build in” the use of subsumption rule in application rules, by

changing the T-App rule to incorporate a subtyping premise

Given any typing derivation, we can now

1. normalize it, to move all uses of subsumption rule to either just before

applications (in the right-hand premise) or at the very end

2. replace uses of T-App with T-SUB in the right-hand premise by uses of the

extended rule above

This yields a derivation in which there is just one use of subsumption, at the

very end!

Design Principles of Programming Languages, Spring 2025 47

Minimal Types

But... if subsumption is only used at the very end of derivations, then it is

actually not needed in order to show that any term is typable!

It is just used to give more types to terms that have already been shown to

have a type.

In other words, if we dropped subsumption completely (after refining the

application rule), we would still be able to give types to exactly the same set

of terms — we just would not be able to give as many types to some of them.

If we drop subsumption, then the remaining rules will assign a unique,

minimal type to each typable term

For purposes of building a typechecking algorithm, this is enough

Design Principles of Programming Languages, Spring 2025 48

Final Algorithmic Typing Rules

Design Principles of Programming Languages, Spring 2025 49

Completeness of the algorithmic rules

Theorem [Minimal Typing]:

If Γ ⊢ t ∶ T, then Γ ↦ t ∶ S for some S <: T.

Proof: Induction on typing derivation.

N.b.: All the messing around with transforming derivations was just to

build intuitions and decide what algorithmic rules to write down and

what property to prove:

the proof itself is a straightforward induction on typing derivations.

Design Principles of Programming Languages, Spring 2025 50

Meets and Joins

Adding Booleans

Suppose we want to add booleans and conditionals to the language we

have been discussing.

For the declarative presentation of the system, we just add in the

appropriate syntactic forms, evaluation rules, and typing rules.

Design Principles of Programming Languages, Spring 2025 52

A Problem with Conditional Expressions

For the algorithmic presentation of the system, however, we encounter

a little difficulty.

What is the minimal type of

𝑖𝑓 𝑡𝑟𝑢𝑒 𝑡ℎ𝑒𝑛 𝑥 = 𝑡𝑟𝑢𝑒, 𝑦 = 𝑓𝑎𝑙𝑠𝑒 𝑒𝑙𝑠𝑒 𝑥 = 𝑡𝑟𝑢𝑒, 𝑧 = 𝑡𝑟𝑢𝑒 ?

Design Principles of Programming Languages, Spring 2025 53

The Algorithmic Conditional Rule
More generally, we can use subsumption to give an expression

if t1 then t2 else t3

any type that is a possible type of both t2 and t3.

So the minimal type of the conditional is the

least common supertype (or join) of

the minimal type of t2 and the minimal type of t3

Q: Does such a type exist for every T2 and T3 ??

Design Principles of Programming Languages, Spring 2025 54

Existence of Joins

Theorem: For every pair of types S and T, there is a type J such that

1. S <: J

2. T <: J

3. If K is a type such that S <: K and T <: K, then J <: K.

i.e., J is the smallest type that is a supertype of both S and T.

How to prove it?

Design Principles of Programming Languages, Spring 2025 55

Calculating Joins

Design Principles of Programming Languages, Spring 2025 56

Examples

What are the joins of the following pairs of types?

1. {x: Bool, y: Bool} and {y: Bool, z: Bool}?

2. {x: Bool} and {y: Bool}?

3. {x: {a: Bool, b: Bool}} and {x: {b: Bool, c: Bool}, y: Bool}?

4. {} and Bool?

5. {x: {}} and {x: Bool}?

6. Top ⟶ x: Bool and Top ⟶ y: Bool ?

7. x: Bool ⟶ Top and {y: Bool} ⟶ Top?

Design Principles of Programming Languages, Spring 2025 57

Meets

To calculate joins of arrow types, we also need to be able to calculate

meets (greatest lower bounds)!

Unlike joins, meets do not necessarily exist.

E.g., Bool ⟶ Bool and {} have no common subtypes, so they certainly

don’t have a greatest one!

Design Principles of Programming Languages, Spring 2025 58

Existence of Meets

Theorem: For every pair of types S and T, we say that a type M is a

meet of S and T, written S  T = M if

1. M <: S

2. M <:T

3. If O is a type such that O <: S and O <: T, then O <:M.

i.e., M (when it exists) is the largest type that is a subtype of both S and T.

Jargon: In the simply typed lambda calculus with subtyping, records, and

booleans ...

➢ The subtype relation has joins

➢ The subtype relation has bounded meets

Design Principles of Programming Languages, Spring 2025 59

Calculating Meets

Design Principles of Programming Languages, Spring 2025 60

Examples

What are the meets of the following pairs of types?

1. {x: Bool, y: Bool} and {y: Bool, z: Bool}?

2. {x: Bool} and {y: Bool}?

3. {x: {a: Bool, b: Bool}} and {x: {b: Bool, c: Bool}, y: Bool}?

4. {} and Bool?

5. {x: {}} and {x: Bool}?

6. Top ⟶ x: Bool and Top ⟶ y: Bool ?

7. x: Bool ⟶ Top and {y: Bool} ⟶ Top?

Design Principles of Programming Languages, Spring 2025 61

Homework☺

• Read and digest chapter 16 & 17

• HW:

─ 16.1.2;

─ 16.2.1;

─ 16.3.3

Design Principles of Programming Languages, Spring 2025 62

