

编程语言的设计原理

Design Principles of Programming Languages

Haiyan Zhao, Di Wang

赵海燕, 王迪

Peking University, Spring Term 2025

Recap

- Core messages in the previous lecture
 - (Untyped) programming languages are defined by syntax and semantics
 - Syntax is often specified by grammars
 - Inductively vs structural induction
 - Semantics can be specified in three ways, and this book chooses operational semantics expressed as evaluation rules
 - Big-step vs small-step semantics

Abstract Machines

- An abstract machine consists of:
 - a set of states
 - a transition relation on states, written as \rightarrow " $t \rightarrow t'$ " is read as "t evaluates to t' in one step".
- A state records all the information in the abstract machine at a given moment.
 - e.g., an abstract-machine-style description of a conventional microprocessor would include the program counter, the contents of the registers, the contents of main memory, and the machine code program being executed.

Operational semantics for Booleans

Syntax of terms and values

```
true
false
if t then t else t
true
false
```

```
terms
constant true
constant false
conditional
```

```
values
true value
false value
```

Evaluation relation for Booleans

• The evaluation relation $t \to t'$ is the smallest relation closed under the following rules:

Evaluation relation for Booleans

Computation rules

if true then
$$t_2$$
 else $t_3 \longrightarrow t_2$ (E-IFTRUE) if false then t_2 else $t_3 \longrightarrow t_3$ (E-IFFALSE)

Congruence rules

$$\frac{\mathtt{t}_1 \longrightarrow \mathtt{t}_1'}{\text{if } \mathtt{t}_1 \text{ then } \mathtt{t}_2 \text{ else } \mathtt{t}_3 \longrightarrow \text{if } \mathtt{t}_1' \text{ then } \mathtt{t}_2 \text{ else } \mathtt{t}_3} \text{(E-IF)}$$

- Computation rules perform "real" computation steps
- Congruence rules determine where computation rules can be applied next

Evaluation relation for Booleans

→ is the smallest two-place relation closed under the following rules:

The notation $t \longrightarrow t'$ is short-hand for $(t, t') \in \longrightarrow$.

If the pair (t, t') is an evaluation relation, then the evaluation statement or judgement $t \to t'$ is said to be derivable

Derivation

 "Justification" for a particular pair of terms that are in the evaluation relation in the form of a tree.

- These trees are called derivation trees (or just derivations).
- The final statement in a derivation is its conclusion.
- We say that the derivation is a witness for its conclusion (or a proof of its conclusion) it records all the reasoning steps that justify the conclusion.

Induction on Derivation

- Write proofs about evaluation "by induction on derivation trees."
- Given an arbitrary derivation \mathcal{D} with conclusion $t \to t'$, we assume the desired result for its *immediate sub-derivation* (if any) and proceed by a case analysis of the final evaluation rule used in constructing the derivation tree.

Induction on Derivation

Theorem [Determinacy of one-step evaluation]:

If $t \rightarrow t'$ and $t \rightarrow t''$, then t' = t''.

Proof. By induction on derivation of $t \rightarrow t'$.

If the last rule used in the derivation of $t \rightarrow t'$ is E-IfTrue, then t has the form

if true then t2 else t3.

It can be shown that there is only one way to reduce such t.

.

Normal Form

Definition: A term *t* is in normal form if *no evaluation rule* applies to it.

Theorem: Every value is in normal form.

Theorem: If *t* is in normal form, then *t* is a *value*.

Prove by contradiction (then by structural induction).

Multi-step Evaluation Relation

Definition: The multi-step evaluation relation $\rightarrow *$ is the *reflexive*, *transitive closure* of one-step evaluation.

Theorem [Uniqueness of normal forms]:

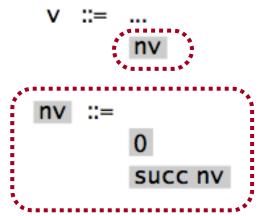
If $t \to * u$ and $t \to * u'$, where u and u' are both normal forms, then u = u'.

Theorem [Termination of Evaluation]:

For every term t there is some normal form t' such that $t \rightarrow * t'$.

Extending Evaluation to Numbers

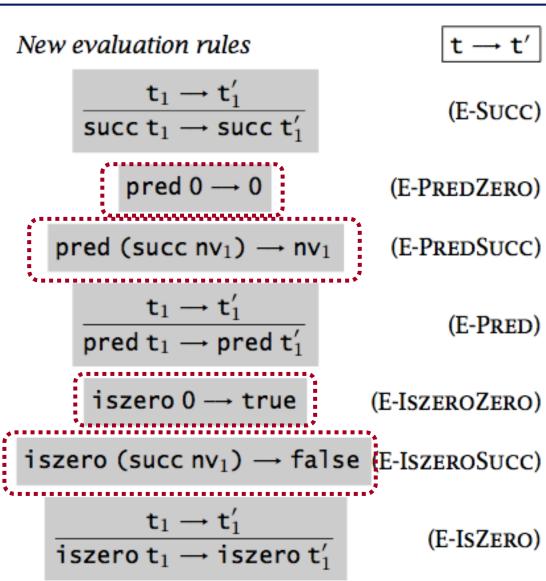
New syntactic forms



terms: constant zero successor predecessor zero test

values: numeric value

numeric values: zero value successor value



Big-step Evaluation

v ↓ v	(B-VALUE)
$\frac{\texttt{t}_1 \Downarrow \texttt{true} \qquad \texttt{t}_2 \Downarrow \texttt{v}_2}{\texttt{if} \; \texttt{t}_1 \; \texttt{then} \; \texttt{t}_2 \; \texttt{else} \; \texttt{t}_3 \; \Downarrow \; \texttt{v}_2}$	(B-IFTRUE)
$\frac{\texttt{t}_1 \Downarrow \texttt{false} \qquad \texttt{t}_3 \Downarrow \texttt{v}_3}{\texttt{if} \; \texttt{t}_1 \; \texttt{then} \; \texttt{t}_2 \; \texttt{else} \; \texttt{t}_3 \; \Downarrow \; \texttt{v}_3}$	(B-IFFALSE)
$\frac{t_1 \Downarrow nv_1}{succ\; t_1 \Downarrow succ\; nv_1}$	(B-Succ)
$\frac{\mathtt{t}_1 \Downarrow \mathtt{0}}{pred\ \mathtt{t}_1 \Downarrow \mathtt{0}}$	(B-PredZero)
$\frac{\mathtt{t}_1 \Downarrow succ\; nv_1}{pred\; \mathtt{t}_1 \Downarrow nv_1}$	(B-PREDSUCC)
$\frac{\texttt{t}_1 \Downarrow \texttt{0}}{\texttt{iszero} \texttt{t}_1 \Downarrow \texttt{true}}$	(B-IszeroZero)
$\frac{\mathtt{t}_1 \Downarrow succ nv_1}{iszero t_1 \Downarrow false}$	(B-IszeroSucc)

Stuckness

Definition: A closed term is stuck if it is in *normal form* but *not a value*.

Examples:

- succ true
- succ false
- if zero then true else false

Summary

- How to define syntax?
 - Grammar, Inductively, Inference Rules, Generative
- How to define semantics?
 - Operational, Denotational, Axomatic
- How to define evaluation relation (operational semantics)?
 - Small-step/Big-step evaluation relation
 - Normal form
 - Confluence/termination

Chapter 5 The Untyped Lambda Calculus

What is lambda calculus for?

Basics: Syntax and Operational semantics

Programming in the Lambda Calculus

Formalities (formal definitions)

Why Lambda calculus?

- Suppose we want to describe a function that adds three to any number we pass it.
- We might write

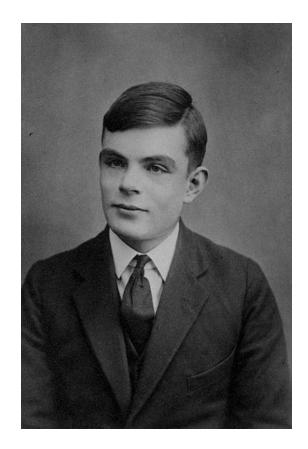
```
plus3 x = succ (succ (succ x))
i.e., plus3 x is succ (succ (succ x))
```

Q: What is plus3 itself?

A: plus3 is the function that, given x, yields succ (succ (succ x)).

Story of Turing and Church

Alonzo Church Lambda Calculus *lambda definable* Church' thesis



Alan Turing Turing Machine Turing computability

What is Lambda calculus for?

- A core calculus (used by Landin) for
 - capturing the language's essential mechanisms, with a collection of convenient derived forms whose behavior is understood by translating them into the core.
 - modeling programming language, as the foundation of many real-world programming language designs (including ML, Haskell, Scheme, Lisp, ...), and being central to contemporary computer science.

Lambda calculus

- A formal system devised by Alonzo Church in the 1930's as a model for computability
 - all computation is reduced to the basic operations of function abstraction and application.
- A very simple but very powerful language based on pure abstraction, with
 - Turing complete
 - Higher order (functions as data)

Lambda calculus

- Widely used in the specification of programming language features, in language design and implementation, and in the study of type systems
- Important due to the fact that it can be viewed simultaneously as
 - a simple programming language in which computations can be described and
 - a mathematical object about which rigorous statements can be proved
- Can be enriched in a variety of ways

Basics

Syntax Scope

Operational semantics

Syntax

 The lambda calculus (or λ-calculus) embodies this kind of function definition and application in the purest possible form

- Terminology:
 - terms in the pure λ -calculus are often called λ -terms
 - terms of the form λx . t are called λ -abstractions or just abstractions

Syntax

Recall the function

plus3
$$x = succ (succ (succ x))$$

• Write it with λ -terms as:

plus3 =
$$\lambda x$$
. succ (succ (succ x))

Note:

This function exists independent of the name plus3

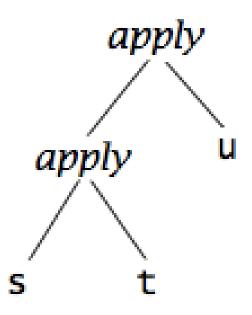
 $\lambda x.t$ is written "fun $x \rightarrow t$ " in OCaml.

Abstract and Concrete Syntax

- It is useful to distinguish the syntax of programming languages at two levels of structure:
 - Concrete syntax (or surface syntax) of the language refers to the strings of characters that programmers directly read and write
 - Abstract syntax is a much simpler internal representation of programs as labeled trees (called abstract syntax trees or ASTs)
 - The tree representation renders the structure of terms immediately obvious, making it a natural fit for the complex manipulations involved in both rigorous language definitions (and proofs about them) and the internals of compilers and interpreters.

Abstract Syntax Trees

• (s t) u

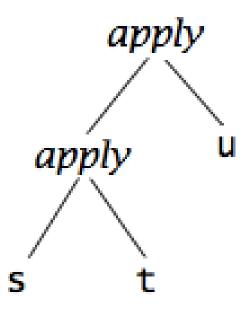


Syntactic conventions

- The λ -calculus provides *only one-argument functions*, all multi-argument functions must be written in curried style.
- The following conventions make the linear forms of terms easier to read and write:
 - Application associates to the left
 e.g., t u v means (t u) v, not t (u v)
 - Bodies of λ abstractions extend as far to the right as possible e.g., λx . λy . x y means λx . $(\lambda y$. x y), not λx . $(\lambda y$. x) y

Abstract Syntax Trees

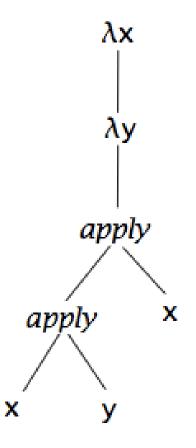
(s t) u (or simply written as s t u)



Abstract Syntax Trees

λx. (λy. ((x y) x))

(or simply written as λx . λy . x y x)



Scope

- An occurrence of the variable x is said to be bound when it occurs in the body t of an abstraction $\lambda x.t$, i.e.,
 - the λ -abstraction term $\lambda x.t$ binds the variable x, and the scope of this binding is the body t.
 - $-\lambda x$ is a *binder* whose *scope* is t.
 - a binder can be renamed as necessary
 - so-called: alpha-renaming
 - e.g., $\lambda x.x = \lambda y.y$

Scope

- An occurrence of x is free if it appears in a position where it is not bound by an enclosing abstraction on x.
 - a term with no free variable is said to be closed.
 - closed terms are also called combinators.
- Exercises: Find free variable occurrences from the following terms:
 - x y,
 - $-\lambda x.x$
 - $-\lambda y.xy$
 - $-(\lambda x.x) x$
 - $-(\lambda x.x)(\lambda y.y x)$
 - $-(\lambda x.x)(\lambda x.x)$
 - $-(\lambda x.(\lambda y.x y)) y$

Operational Semantics

- If the function $\lambda x.t$ is applied to t_2 , we substitute all free occurrences of x in t with t_2 .
 - If the substitution would bring a free variable of t₂ in an expression where this variable occurs bound, we rename the bound variable before performing the substitution.

$$(\lambda x. t_{12}) t_2 \rightarrow [x \mapsto t_2] t_{12},$$

Examples:

```
(\lambda x.x) (\lambda x.x) \rightarrow ?

(\lambda x.(\lambda y.x y)) y \rightarrow ?

(\lambda x.(\lambda y.(x (\lambda x.x y)))) y \rightarrow ?
```

Operational Semantics

Beta-reduction: the only computation (substitution)

$$(\lambda x. t_{12}) t_2 \rightarrow [x \mapsto t_2] t_{12},$$

- the term obtained by replacing all free occurrences of x in t₁₂ by t₂
- a term of the form $(\lambda x.t) v$ a λ -abstraction applied to a value is called a redex (short for "reducible expression")
- the operation of rewriting a redex according to the above rule is called beta-reduction
- Examples:

$$(\lambda x. x) y \rightarrow y$$

 $(\lambda x. x (\lambda x. x)) (u r) \rightarrow u r (\lambda x. x)$

Values

$$extstyle v := \lambda extstyle x.t$$

values abstraction value

Evaluation Strategies

- Full beta-reduction
 - any redex may be reduced at any time.
- e. g., $id = \lambda x.x$, consider $(\lambda x.x) ((\lambda x.x) (\lambda z. (\lambda x.x) z))$
 - we can apply *full beta reduction* to *any* of the following *underlined redexes*:

$$\begin{array}{ll} \underline{id \ (id \ (\lambda z. \ id \ z))} & \text{outermost} \\ \underline{id \ (\underline{(id \ (\lambda z. \ id \ z))})} & \text{middle} \\ \underline{id \ (id \ (\lambda z. \ \underline{id \ z}))} & \text{innermost} \end{array}$$

Note: lambda calculus is **confluent** under full beta-reduction. Ref. Church-Rosser property.

- The normal order strategy
 - The leftmost, outmost redex is always reduced first.
 - try to reduce always the leftmost expression of a series of applications, and continue until no further reductions are possible
 - the evaluation relation under this strategy is actually a partial function: each term t evaluates in one step to at most one term t'

```
 \frac{\text{id} (\text{id} (\lambda z. \text{id} z))}{\text{id} (\lambda z. \text{id} z)} 
 \rightarrow \lambda z. \underline{\text{id} z}; 
 \rightarrow \lambda z. z 
 \rightarrow
```


- call-by-name strategy
 - a more restrictive normal order strategy, allowing no reduction inside abstraction.

$$\frac{id (id (\lambda z. id z))}{id (\lambda z. id z)}$$

$$\rightarrow \lambda z. id z$$

$$\rightarrow \lambda z. id z$$

- stop before the last and regard λz . id z as a normal form
- call-by-need

- call-by-value strategy
 - only outermost redexes are reduced and
 - where a redex is reduced only when its right-hand side has already been reduced to a value
- value: a term that cannot be reduced any more.

```
id (id (\lambda z. id z))
\rightarrow id (\lambda z. id z)
\rightarrow \lambda z. id z
\rightarrow
```


- call-by-value strategy
 - strict in the sense that the arguments to functions are always evaluated,
 whether or not they are used by the body of the function.
 - reflects standard conventions found in most mainstream languages.
 - adopted in our course

- The choice of evaluation strategy actually makes little difference when discussing type systems.
 - The issues that motivate various typing features, and the techniques used to address them, are much the same for all the strategies.

Evaluation Strategies: summary

- Full beta-reduction
 - any redex may be reduced at any time.
 - confluent under full beta-reduction
- normal order strategy
 - The *leftmost*, *outmost redex* is always reduced *first*.
- call-by-name strategy
 - a more restrictive normal order strategy, allowing no reduction inside abstraction.
- call-by-value strategy
 - only outermost redexes are reduced and
 - where a redex is reduced only when its right-hand side has already been reduced to a value
 - strict in the sense that the arguments to functions are always evaluated, whether or not they
 are used by the body of the function.
 - reflects standard conventions found in most mainstream languages.
 - adopted in our course

Operational Semantics

Computation rule

$$(\lambda x.t_{12})$$
 $v_2 \longrightarrow [x \mapsto v_2]t_{12}$ (E-APPABS)

Congruence rules

Lambda Calculus

- Once we have λ-abstraction and application, we can throw away all the other language primitives and still have left a rich and powerful programming language.
- Everything is a function:
 - Variables always denote functions
 - Functions always take other functions as parameters
 - The result of a function is always a function

Abstractions over Functions

Consider the
 \(\lambda \)-abstraction

```
g = \lambda f. \ f \ (f \ (succ \ O))
```

- the parameter variable f is used in the function position in the body of g.
- terms like g are called higher-order functions.
- If we apply g to an argument like plus3, the "substitution rule" yields a nontrivial computation:

```
g plus3
= (\lambda f. \ f \ (f \ (succ \ 0))) \ (\lambda x. \ succ \ (succ \ x)))
i.e. (\lambda x. \ succ \ (succ \ (succ \ x))) \ ((\lambda x. \ succ \ (succ \ (succ \ x))) \ (succ \ 0))
i.e. (\lambda x. \ succ \ (succ \ (succ \ x))) \ (succ \ (succ \ (succ \ x)))
i.e. (succ \ (succ
```


Programming in the Lambda Calculus

Multiple Arguments
Church Booleans
Pairs
Church Numerals
Recursion

Multiple Arguments

• λ -calculus provides *only one-argument functions*, all multi-argument functions must be written in curried style.

$$f(x, y) = t$$
 (i.e., $f x y$)

currying

$$(f x) y = t$$

λ-encoding

$$f = \lambda x. (\lambda y. t)$$

Multiple Arguments

- In general, λx. λy. s is a function that, given a value v for x, yields a function that, given a value u for y, yields t with v in place of x and u in place of y.
 - i.e., $f = \lambda x$. λy . s is a two-argument function.
- Apply f to its arguments one at a time

```
- e.g., f v w \Leftrightarrow (f v) w \Leftrightarrow (\lambda y. [x \mapsto v] s) w \Leftrightarrow [y \mapsto w] [x \mapsto v] s
```

• λ -abstraction that does nothing but *immediately yields another* abstraction — is very common in the λ -calculus.

Boolean values can be encoded as:

$$tru = \lambda t. \lambda f. t$$

$$fls = \lambda t. \lambda f. f$$

$$= \frac{\text{tru } v \text{ w}}{(\lambda t. \lambda f. t) \text{ v}} \text{ w by definition}$$

$$\longrightarrow \frac{(\lambda f. \text{ v}) \text{ w}}{v} \text{ reducing the underlined redex}$$

$$\longrightarrow v$$

$$= \frac{\text{fls } v \text{ w}}{(\lambda t. \lambda f. f) \text{ v}} \text{ w by definition}$$

$$\longrightarrow \frac{(\lambda f. f) \text{ w}}{(\lambda f. f) \text{ w}} \text{ reducing the underlined redex}$$

$$\longrightarrow w$$

$$\text{reducing the underlined redex}$$

$$\text{reducing the underlined redex}$$

Boolean conditional and operators can be encoded as a combinator:

$$test = \lambda l. \lambda m. \lambda n. lm n$$

	test tru v w	
=	$(\lambda 1. \lambda m. \lambda n. 1 m n) tru v w$	by definition
\longrightarrow	$(\lambda m. \lambda n. trumn) v w$	reducing the underlined redex
 →	$(\lambda n. tru \vee n) w$	reducing the underlined redex
 →	truvw	reducing the underlined redex
=	$(\lambda t.\lambda f.t) v w$	by definition
 →	(λf. v) w	reducing the underlined redex
 →	V	reducing the underlined redex

- How to define *not*?
 - a function that, given a boolean value v, returns fls if v is tru and tru if v is fls.

not = λ b. b fls tru

- Boolean conditional
 - and is a function that, given two boolean values v and w, returns w if v is tru and fls if v is fls.
 - thus and v w yields tru if both v and w are tru, and fls if either v or w is fls.

and operators can be encoded as:

and = λb , λc , b c fls

• How to define or ?

$$or = \lambda a. \lambda b. a tru b$$

Pairs

Encoding

pair =
$$\lambda f. \lambda s. \lambda b.$$
 b f s
fst = $\lambda p.$ p tru
snd = $\lambda p.$ p fls

Example

- Encoding Church numerals
 - Basic idea: represent the number n by a function that "repeats some action n times", making numbers into active entities

$$c_0 = \lambda s. \lambda z. z$$

 $c_1 = \lambda s. \lambda z. s z$
 $c_2 = \lambda s. \lambda z. s (s z)$
 $c_3 = \lambda s. \lambda z. s (s (s z))$

— each number n is represented by a term c_n taking two arguments, s and z (for "successor" and "zero"), and applies s, n times, to z.

Functions on Church Numerals

Successor

$$scc = \lambda n. \lambda s. \lambda z. s (n s z);$$

Addition

```
plus = \lambda m. \lambda n. \lambda s. \lambda z. m s (n s z);
```

Both **scc** and **plus** take some Church numeral (**n** for **scc** and **m,n** for **plus**) and **yield another Church numeral** —i.e., **a function-** that accepts arguments **s** and **z**, applies s iteratively to z

Functions on Church Numerals

Multiplication

```
times = \lambda m. \lambda n. m (plus n) c0;
```

based on **plus**: since plus takes its arguments one at a time, applying it to just one argument **n** yields the function that adds **n** to whatever argument given, which is passed to **m** and **c**0: apply the function that adds **n** to its argument, iterated **m** times, to zero

Zero test

```
iszro = \lambdam. m (\lambdax. fls) tru
iszro c0 ?
iszro c1 ?
```

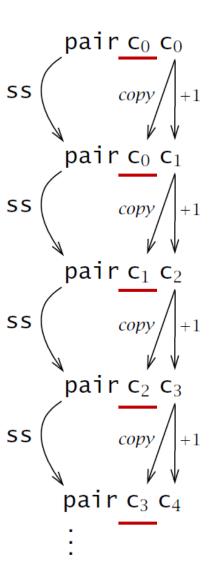

- Can you define minus?
 - Suppose we have pred, can you define minus?
 - $\lambda m. \lambda n. n pred m$
- Can you define pred?
 - $-\lambda n. \lambda s. \lambda z. n (\lambda g. \lambda h. h (g s)) (\lambda u. z) (\lambda u. u)$
 - $-(\lambda u.z)$ -- a wrapped zero
 - $-(\lambda u.u)$ the last application to be skipped
 - $-(\lambda g. \lambda h. h(gs))$ -- apply h if it is the last application, otherwise apply g
 - Try n = 0, 1, 2 to see the effect

predecessor

```
zz = pair c_0 c_0

ss = \lambda p. pair (snd p) (scc (snd p))

prd = \lambda m. fst (m ss zz)
```



- We have seen that booleans, numerals, and the operations on them can be encoded in the pure lambda-calculus (λ).
- When working with examples, however, it is often convenient to include the primitive booleans and numerals (and possibly other data types) as well (λNB).
- It is easy to *convert back and forth* between the two different implementations of booleans and numerals.
 - e.g., to turn a Church boolean into a primitive Boolean
 realbool = λb. b true false;
 - To go the other direction, we use an if expression:
 churchbool = λb. if b then tru else fls

Normal forms

- Recall
 - A normal form is a term that cannot take an evaluation step.
 - A stuck term is a normal form that is not a value.

- Are there any stuck terms in the pure
 ¹-calculus?
- Does every term evaluate to a normal form?

Divergence

Omega =
$$(\lambda x. x x) (\lambda x. x x)$$

- Note that omega evaluates in one step to itself!
 - evaluation of omega never reaches a normal form: it diverges.

Terms with no normal form are said to diverge.

Divergent computation does not seem very useful in itself. However,
 there are variants of omega that are very useful ...

Recursion in the Lambda Calculus

• Suppose f is some λ -abstraction, and consider the following term:

$$Y_{f} = (\lambda x. f(x x)) (\lambda x. f(x x));$$

$$Y_{f} = \frac{(\lambda x. f(x x)) (\lambda x. f(x x))}{\longrightarrow}$$

$$f((\lambda x. f(x x)) (\lambda x. f(x x)))$$

$$\longrightarrow$$

$$f(f((\lambda x. f(x x)) (\lambda x. f(x x))))$$

$$\longrightarrow$$

$$f(f(f((\lambda x. f(x x)) (\lambda x. f(x x)))))$$

$$\longrightarrow$$

- Y_f is still not very useful, since (like omega), all it does is diverge.
 - It works for the evaluation strategies like call-by-name, but fails under the call-by-value strategy. This is because the expression (λx.f (x x)) (λx.f (x x)) attempts to evaluate the argument, resulting in an infinite loop.
- Is there any way we could "slow it down" (to avoid infinite loops)?
 - We can achieve this by introducing an additional delay wrapper function, ensuring that the argument is evaluated only at the time of the function call.

Recursion: Delaying divergence

 $delay = \lambda y$. omega

Note that delay is a *value* — it will only diverge when actually applying it to an argument, i.e., we can safely pass it as an argument to other functions, return it as a result from functions, etc.

```
(λp. fst (pair p fls) tru) delay

→

fst (pair delay fls) tru

→

delay tru

→

omega

→
```

Design Principles of Programming Language, Spring 2025

Recursion: Delaying divergence

 Here is a variant of omega in which the delay and divergence are a bit more tightly intertwined:

omegav =
$$\lambda y. (\lambda x. (\lambda y. x x y)) (\lambda x. (\lambda y. x x y)) y$$

 Note that omegav is a normal form. However, if we apply it to any argument v, it diverges:

omegav v=
$$(\lambda y. (\lambda x. (\lambda y. x x y)) (\lambda x. (\lambda y. x x y)) y) v$$

$$\rightarrow (\lambda x. (\lambda y. x x y)) (\lambda x. (\lambda y. x x y)) v$$

$$\rightarrow \lambda y. (\lambda x. (\lambda y. x x y)) (\lambda x. (\lambda y. x x y)) y) v$$

$$= 0$$

$$\log_{\text{age Spring 2025}} \text{omegav v}$$

Recursion: another Delayed variant

Suppose f is a function, define

$$Z_f = \lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y$$

by combining the "added f" from Y_f with the "delayed divergence" of omegav.

• apply Z_f to an argument v, something interesting happens:

$$Z_f v = \frac{(\lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y) v}{\longrightarrow} v$$

$$= \frac{(\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) v}{\longrightarrow} v$$

$$= f (\lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y) v$$

$$= i.e., f Z_f v$$

Recursion: another Delayed variant

$$Z_{f} v =$$

$$(\lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y) v$$

$$\rightarrow$$

$$(\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) v$$

$$\rightarrow$$

$$f (\lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y) v$$

$$=$$

$$f Z_{f} v$$

Since Z_f and v are both *values*, the next computation step will be **the** reduction of f Z_f — that is, f gets to do some computation before we "diverge"

Recursion: Generic Z

If we define

i.e.,

$$Z = \lambda f. Z_f$$

$$Z =$$

$$\lambda f. \lambda y. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y)) y$$

thus we can obtain the behavior of Z_f for any f we like, simply by applying Z to f.

$$Z f \longrightarrow Z_f$$

Fixed-point combinator

$$fix = \lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y));$$

$$fix f = f (\lambda y. (fix f) y)$$

- $Z = \lambda f$. λy . $(\lambda x. f(\lambda y. x x y)) (\lambda x. f(\lambda y. x x y)) y$
 - Z here is essentially the same as the fix given in the textbook

As a useful generalization of omega combinator, fix can be used to help define recursive functions

Basic Idea:

A *recursive* definition:

$$h =$$
 h >

$$g = \lambda f$$
.

 body containing $f >$
 $h = fix g$

Example:

```
fac = \lambda n. if eq n c0
           then c1
            else times n (fac (pred n)
g = \lambda f \cdot \lambda n. if eq n c0
              then c1
              else times n (f (pred n)
fac = fix g
```

Exercise: Check that fac $c3 \rightarrow c6$.

fix =
$$\lambda f. (\lambda x. f (\lambda y. x x y)) (\lambda x. f (\lambda y. x x y))$$

 $Y_f = (\lambda x. f (x x)) (\lambda x. f (x x));$

- Assuming call-by-value
 - -(x x) in Y_f is not a value
 - while $(\lambda y. x x y)$ is a value
 - Y_f will diverge for any f

Formalities (Formal Definitions)

Syntax (free variables)

Substitution

Operational Semantics

Syntax

Definition [Terms]:

Let \mathcal{V} be a *countable set* of variable names.

The set of terms is *the smallest set* \mathcal{T} such that

- 1. $x \in \mathcal{T}$ for every $x \in \mathcal{V}$;
- 2. if $t_1 \in \mathcal{T}$ and $x \in \mathcal{V}$, then $\lambda x.t_1 \in \mathcal{T}$;
- 3. if $t_1 \in \mathcal{T}$ and $t_2 \in \mathcal{T}$, then $t_1 t_2 \in \mathcal{T}$.

Syntax

• **Definition:** Free Variables of term t, written as FV(t):

$$FV(x) = \{x\}$$

$$FV(\lambda x.t_1) = FV(t_1) \setminus \{x\}$$

$$FV(t_1 t_2) = FV(t_1) \cup FV(t_2)$$

Substitution


```
[x \mapsto s]x = s
[x \mapsto s]y = y \qquad \text{if } y \neq x
[x \mapsto s](\lambda y.t_1) = \lambda y. [x \mapsto s]t_1 \qquad \text{if } y \neq x \text{ and } y \notin FV(s)
[x \mapsto s](t_1 t_2) = [x \mapsto s]t_1 [x \mapsto s]t_2
```

Alpha-conversion: Terms that *differ only in the names of bound variables* are interchangeable *in all contexts*.

Example:

$$[x \mapsto y z] (\lambda y. x y)$$
= $[x \mapsto y z] (\lambda w. x w)$
= $\lambda w. y z w$

Operational Semantics

Syntax

t ::=

X

 $\lambda x.t$

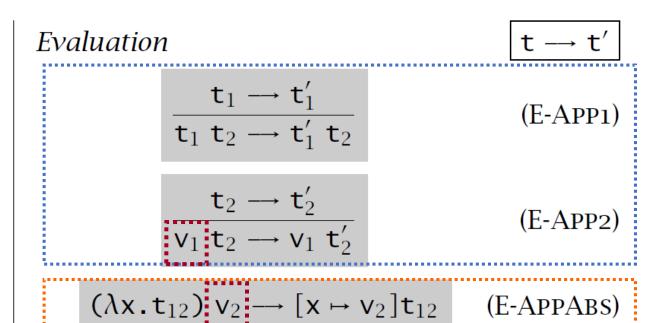
t t

V ::=

 $\lambda x.t$

terms: variable abstraction application

values: abstraction value



Summary

- What is lambda calculus for?
 - A core calculus for capturing language essential mechanisms
 - Simple but powerful
- Syntax
 - Function definition + function application
 - Binder, scope, free variables
- Operational semantics
 - Substitution
 - Evaluation strategies: normal order, call-by-name, call-by-value

Homework

- Read through and understand Chapter 5.
- Do exercise 5.3.3 & 5.3.8 in Chapter 5.
 - 5.3.3 EXERCISE [$\star\star$]: Give a careful proof that $|FV(t)| \leq size(t)$ for every term t. \Box

5.3.8 EXERCISE [★★]: Exercise 4.2.2 introduced a "big-step" style of evaluation for arithmetic expressions, where the basic evaluation relation is "term t evaluates to final result v." Show how to formulate the evaluation rules for lambdaterms in the big-step style.