
编程语言的设计原理
Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2025

2c4r

Recap: untyped lambda-calculus

Design Principles of Programming Language, Spring 2025 2

• The λ-calculus embodies this kind of function definition and application in the

purest possible form

─ terms in the pure λ-calculus are often called λ-terms

─ terms of the form λx. t are called λ-abstractions or just abstractions

Syntax

• Definition [Terms]:

Let 𝒱 be a countable set of variable names.

The set of terms is the smallest set 𝒯 such that

1. x ∈ 𝒯 for every x ∈ 𝒱;

2. if t1 ∈ 𝒯 and x ∈ 𝒱, then λx.t1 ∈ 𝒯;

3. if t1 ∈ 𝒯 and t2 ∈ 𝒯, then t1 t2 ∈ 𝒯.

Design Principles of Programming Language, Spring 2025 3

Syntactic conventions

• The λ -calculus provides only one-argument functions, all multi-

argument functions must be written in curried style.

• The following conventions make the linear forms of terms easier to

read and write:

─ Application binds more tightly than abstraction

e.g., λx. x y means λx. (x y) not (λx. x) y

─ Application associates to the left

e.g., t u v means (t u) v, not t (u v)

─ Bodies of λ- abstractions extend as far to the right as possible

e.g., λx. λy.x y means λx. (λy. x y), not λx. (λy. x) y

Design Principles of Programming Language, Spring 2025 4

Scope

• An occurrence of the variable 𝑥 is said to be bound when it occurs in

the body t of an abstraction λx.t, i.e.,

─ the λ-abstraction term λ𝑥.t binds the variable 𝑥 , and the scope of

this binding is the body t.

─ λ𝑥 is a binder (binding construct) whose scope is t.

• e.g., (λx.(λy.x y)) y

─ a binder can be renamed as necessary

• so-called: alpha-renaming

• e.g., λ𝑥.x = λy. y

Design Principles of Programming Language, Spring 2025 5

Scope

• Definition: Free Variables of term t，written as FV(t):

FV(x) = {x}

FV(λx.t1) = FV(t1) \ {x}

FV(t1 t2) = FV(t1) ∪ FV(t2)

Design Principles of Programming Language, Spring 2025 6

Operational Semantics

• Computation rule

• Congruence rules

Design Principles of Programming Language, Spring 2025 7

Operational Semantics

• Beta-reduction: the only computation (substitution)

─ the term obtained by replacing all free occurrences of x in t12 by t2

─ a redex (short for “reducible expression”) : a term of the form

(λx.t) v — a λ-abstraction applied to a value

─ the operation of rewriting a redex according to the above rule is

called beta-reduction

• Examples:

λx. x y → y

(λx. x (λx. x)) (u r) → u r (λx. x)
Design Principles of Programming Language, Spring 2025 8

Substitution

Design Principles of Programming Language, Spring 2025 9

Example:
[x ↦ y z] (𝜆y. x y)

= [x ↦ y z] (λw. x w)
= λw. y z w

Alpha-conversion : Terms that differ only in the names of bound
variables are interchangeable in all contexts.

Bound Variables

• Recall that bound variables can be renamed, at any moment, to enable

substitution:

• Variable Representation

─ Represent variables symbolically, with variable renaming mechanism

─ Represent variables symbolically, with bound variables are all different

─ “Canonically” represent variables in a way such that renaming is unnecessary

─ No use of variables: combinatory logic

Design Principles of Programming Language, Spring 2025 10

Chapter 6
Nameless Representation of

Terms

Terms and Contexts

Shifting and Substitution

Terms and Contexts

Nameless Terms

• De Bruijn idea: Replacing named variables by natural numbers,

where the number 𝑘 stands for “the variable bound by the 𝑘′𝑡ℎ

enclosing λ”. e.g.,

─ λx.x λ.0

─ λx.λy. x (y x) λ.λ. 1 (0 1)

De Bruijn terms vs De Bruijn indices

• e.g., the corresponding nameless term for the following:

c0 = λs. λz. z;

c2 = λs. λz. s (s z);

plus = λm. λn. λs. λz. m s (n z s);

fix = λf. (λx. f (λy. (x x) y)) (λx. f (λy. (x x) y));

foo = (λx. (λx. x)) (λx. x);

Nameless Terms

• Need to keep track of how many free variables each term may contain.

Definition [Terms]: Let 𝒯 be the smallest family of sets {𝒯0, 𝒯1 , 𝒯2, . . .} such that

1. k ∈ 𝒯n whenever 0 ≤ k < n;

2. if t1 ∈ 𝒯n and n>0, then λ.t1 ∈ 𝒯n−1;

3. if t1 ∈ 𝒯n and t2 ∈ 𝒯n, then (t1 t2) ∈ 𝒯n.

• Note:

─ terms with no free variables are called the 0-terms; 1-terms (one free variables), …

─ 𝒯n are set of terms with at most n free variables, n-terms, numbered between 0 and

n-1: a given element of 𝓣n need not have free variables with all these numbers, or

indeed any free variables at all. When t is closed, for example, it will be an element of

𝒯n for every n.

─ two ordinary terms are equivalent modulo renaming of bound variables iff they have

the same de Bruijn representation.

Name Context

How to represent

λx. y x

as a nameless term?

Here y is free variable.

We know what to do with x, but we cannot see the binder for y, so it is

not clear how “far away” it might be and we do not know what number

to assign to it.

To deal with these terms containing free variables, we need the idea of

a naming context.

Name Context

Definition: Suppose x0 through xn are variable names from 𝜈 . The

naming context

Γ = xn, xn−1, . . . x1, x0 assigns to each xi the de Bruijn index i.

Note that the rightmost variable in the sequence is given the index 0;

this matches the way we count λ binders — from right to left —

when converting a named term to nameless form.

Name Context

We write dom(𝜞) for the set {xn, . . . x1, x0 } of variable names

mentioned in Γ .

• e.g., Γ = x ↦ 4; y ↦ 3; z ↦ 2; a ↦ 1; b ↦ 0 , under this Γ, we have

─ x (y z) ?

• 4 (3 2)

─ λw. y w

• λ. 4 0

─ λw. λa. x

• λ. λ. 6

Shifting and Substitution

How to define substitution [k ↦ s] t?

Shifting

• Under the naming context Γ : x ↦ 1, z ↦ 2

[1 ↦ 2 (λ. 0)] λ. 2 ⟶ ?

i.e., [x ↦ z (λw. w)] 𝛌y. x ⟶ ?

• When a substitution goes under a λ-abstraction, as in [1 ↦ s](λ.2) (i.e.,[x ↦ s] (λy. x),

assuming that 1 is the index of x in the outer context), the context in which the

substitution is taking place becomes one variable longer than the original.

• We need to increment the indices of the free variables in s so that they keep referring to

the same names in the new context as they did before.

─ e.g., s = 2 (λ. 0), , i.e., s = z (λw. w), assuming 2 is the index of z in the outer context,

we need to shift the 2 but not the 0

• Shifting is just the auxiliary operation: renumber the indices of the free variables in a

term.

Shifting

Substitution

• Example

[1 ↦ 2 (λ. 0)] λ. 2 ⟶ λ. 3 (λ. 0)

i.e., [x ↦ z (λw. w)] λy. x ⟶ λy. z (λw. w)

Evaluation

• To define the evaluation relation on nameless terms, the only thing

we need to change (i.e., the only place where variable names are

mentioned) is the beta-reduction rule (computation rules), while keep

the other rules identical to what as Figure 5-3.

• How to change the above rule for nameless representation?

Evaluation

• Example:

Homework

• Read Chapter 6.

─ Do Exercise 6.3.2.

• Read Chapter 7 and digest the fulluntyped implementation includes

extensions such as numbers and booleans.

