wiEESANEITIRIE
Design Principles of
Programming Languages

Haiyan Zhao, Di Wang
X, T

Peking University, Spring Term 2025

Recap: untyped lambda-calculus

Syntax
t =

terms:

X variable
AX. T abstraction
tt application
values:

AX. T abstraction value

Evaluation t— t
.............................. : 1—>t’1
- (E-APP1)
Tt — ¢ T
tr, — t-
= - (E-APP2)

« The A-calculus embodies this kind of function definition and application in the
purest possible form

— terms in the pure A-calculus are often called A-terms
— terms of the form Ax. t are called A-abstractions or just abstractions

Design Principles of Programming Language, Spring 2025

Syntax

* Definition [Terms]:
Let V be a countable set of variable names.
The set of terms Is the smallest set 7" such that
1. xeT foreveryxevV,
2. Ift, €T and x € V, then Ax.t; € T;
3. iftyeJandt,eJ,thent; t, € T.

Design Principles of Programming Language, Spring 2025 3

Syntactic conventions

« The A-calculus provides only one-argument functions, all multi-
argument functions must be written in curried style.

* The following conventions make the linear forms of terms easier to
read and write:

— Application binds more tightly than abstraction
e.g., AX. X y means Ax. (x y) not (Ax. x) y

— Application associates to the left
e.g., tuvmeans (tu)v,nott(uv)

— Bodies of A- abstractions extend as far to the right as possible
e.g., AX. Ay.xy means Ax. (Ay. x y), not Ax. (Ay. xX) y

Design Principles of Programming Language, Spring 2025 4

Scope

 An occurrence of the variable x Is said to be bound when It occurs In
the body t of an abstraction Ax.t, I.e.,

— the A-abstraction term Ax.t binds the variable x , and the scope of
this binding is the body t.

— Ax Is a binder (binding construct) whose scope is t.
* eg, (Ax.(Ayxy))y

— a binder can be renamed as necessary
« so-called: alpha-renaming
* e.g., Axx=Ayy

Design Principles of Programming Language, Spring 2025 5

Scope

« Definition: Free Variables of term t, written as FV/(1):
FV(x) = {x}

FV(Ax.t)) = FV(t) \ {x}

FV(t, t,) =FV(t,) UFV(t,)

Design Principles of Programming Language, Spring 2025 6

Operational Semantics

« Computation rule

(AX.t12) Vo — [x +— Vo]t1o (E-APPABS)

- Congruence rules

T1 — T
} (E-APP1)
T1 €T — tl To
/
To — T
: f (E-APP2)
V1 T — V1 'l:2

Design Principles of Programming Language, Spring 2025 7

Operational Semantics

« Beta-reduction: the only computation (substitution)

rF ——

(Ax. ti2) t —*:[I — tz]:tlz-

— the term obtained by replacing all free occurrences of x in t,, by t,

— a redex (short for “reducible expression™) : a term of the form
(Ax.t) v — a A-abstraction applied to a value

— the operation of rewriting a redex according to the above rule is
called beta-reduction

« Examples:

Ax.x)y =y
(AX.x (Ax.X)) (ur) = ur (AX.X)

Design Principles of Programming Language, Spring 2025 8

Substitution

X — S|X = S

AX= sy = Y e Y # X
X~ s|(Ay.t;) = Ay. [x~ s]t ify+xandy ¢ FV(s)
XHS(t1t2)= [XHS]tl[XHS]tg ..

§Alpha-conversion . Terms that differ only in the names of bouna’§
variables are interchangeable /n all contexts. |

Example:
[x >y z] (Ay. xy)
=[x~ vyz] (Aw. x w)
= AW.YZW

Design Principles of Programming Language, Spring 2025 9

Bound Variables

« Recall that bound variables can be renamed, at any moment, to enable
substitution:

(X — S|X = S
AXxesly =Y L R
X~ s](Ay.t;) = Ay. [x~ st ity+xandy ¢ FV(s)
P P T B B

« Variable Representation
— Represent variables symbolically, with variable renaming mechanism
— Represent variables symbolically, with bound variables are all different
— “Canonically” represent variables in a way such that renaming is unnecessary
— No use of variables: combinatory logic

Design Principles of Programming Language, Spring 2025 10

Chapter 6

Nameless Representation of
Terms

Terms and Contexts
Shifting and Substitution

Terms and Contexts

Nameless Terms

 De Bruijn idea: Replacing named variables by natural numbers,
where the number k stands for “the variable bound by the k'th

enclosing A”. e.g.,
— AXX A0
— AXAY. X (Y X) AA1(01)

De Bruijn terms vs De Bruijn indices

* e.g., the corresponding nameless term for the following:

cO =As. Az. z;

c2 =As. Az. s (s 2);

plus = Am. An. As. Az.m s (n z s);

fix = M. (AX. f (Ay. (X X) ¥)) (AX. T (Ay. (X X) ¥));
foo = (AX. (AX. X)) (AX. X);

Nameless Terms

* Need to keep track of how many free variables each term may contain.
Definition [Terms]. Let T be the smallest family of sets {770, 71, T2, . . .} such that
1. k€ Tn whenever 0 <k <n;
2. Ift1 € Ty and n>0, then A.ty € 71,
3. ift1 €Ty and ty € T, then (1 t2) € T,
* Note:
— terms with no free variables are called the O-terms; 1-terms (one free variables), ...

— T, are set of terms with at most n free variables, n-terms, numbered between 0 and
n-1: a given element of 7, need not have free variables with all these numbers, or
Indeed any free variables at all. When t is closed, for example, it will be an element of

T for every n.

— two ordinary terms are equivalent modulo renaming of bound variables iff they have
the same de Bruijn representation.

Name Context

How to represent

as a hameless term?

Here y Is free variable.

We know what to do with x, but we cannot see the binder for y, soitis
not clear how “far away” it might be and we do not know what number
to assign to it.

To deal with these terms containing free variables, we need the idea of
a naming context.

Name Context

Definition: Suppose X, through x, are variable names fromv. The
naming context
[=X, X,—1, - - « X1, Xg @ssigns to each x;the de Bruijn index I.

Note that the rightmost variable in the sequence Is given the index O;
this matches the way we count A binders — from right to left —
when converting a named term to nameless form.

Name Context

We write dom(I') for the set {x,, . . . X;, Xy} of variable names
mentioned in I".

e eg,'=x»4,y»3;z»2;a~ 1, b0, underthisI', we have
— X (y2) ?
« 4(32)
— AW.y W
« A.40
— Aw. Aa. X
* LA G

Shifting and Substitution

How to define substitution [k — s] t?

Shifting

 Underthe namingcontext I': x— 1,2z~ 2
1-2A0)]JA2— ?
lLe.,, [X Z(AW. W)]Ay. X — ?

 When a substitution goes under a A-abstraction, as in [1 = s](A.2) (i.e.,[x = s] (Ay. X),
assuming that 1 is the index of x in the outer context), the context in which the
substitution is taking place becomes one variable longer than the original.

 We need to increment the indices of the free variables in s so that they keep referring to
the same names in the new context as they did before.

— e.g.,s=2(A.0),,1.e., s=z (Aw. w), assuming 2 is the index of z in the outer context,
we need to shift the 2 but not the O

« Shifting Is just the auxiliary operation: renumber the indices of the free variables in a
term.

Shifting

DEFINITION [SHIFTING|: The d-place shift of a term t above cutoff ¢, written
14 (1), is defined as follows:

k tifk<cl
d _ : :
A {k fd itk
td(A.ty) = A. 19 (1))
t9(ty ta) = 19(ty) 19(tp)
We write 19 (t) for 14 (t). u

1. Whatis 12 (A.A. 1 (02))?

2. Whatis 1“(A. 01 (A.012))?

Substitution

DEFINITION [SUBSTITUTION]: The substitution of a term s for variable num-
ber j in a term t, written [J — s|t, is defined as follows:

. - s ifk =73

3 slk) {k___Q_th_?l"}’ﬂ?? _______ |

(j—sl(A.t1) = Ad[j+1—11(s)]ty |

(] = s](t) t2) = ([j sl [J = sTt) O
(X — S|X = S

X — sy =y ify # X

X~ s](Ay.t;) = Ay. [x+~ s]t; ity+xandy ¢ FV(s)

x=s](t) t2) = [x=s]t [x=s]t

Evaluation

« To define the evaluation relation on nameless terms, the only thing
we need to change (i.e., the only place where variable names are
mentioned) Is the beta-reduction rule (computation rules), while keep
the other rules identical to what as Figure 5-3.

(AXx. t12) to — [X — ta]tyo,

 How to change the above rule for nameless representation?

Evaluation

 Example:

(Ax. ty2) to — [x ~— t2]t2,

(Acti2) v —1 17 IHUH*TIC‘-fz)]tlz]

(A.102) (A.0) —0(A.0) 1

Homework

« Read Chapter 6.
— Do Exercise 6.3.2.

6.3.2 EXERCISE [xxx|: De Bruijn’s original article actually contained two different
proposals for nameless representations of terms: the deBruijn indices pre-
sented here, which number lambda-binders “from the inside out,” and de
Bruijn levels, which number binders “from the outside in.” For example, the
term AXx. (Ay. x y) xis represented using deBruijn indices as A. (A. 10) O
and using deBruijn levels as A. (A. 0 1) 0. Define this variant precisely and
show that the representations of a term using indices and levels are isomor-
phic (i.e., each can be recovered uniquely from the other). O

 Read Chapter 7 and digest the fulluntyped implementation includes
extensions such as numbers and booleans.

