
编程语言的设计原理

Design Principles of

Programming Languages

Haiyan Zhao, Di Wang

赵海燕，王迪

Peking University, Spring Term 2025

Type Basics

Chapter 8: Typed Arithmetic Expressions

Types

The Typing Relation

Safety = Progress + Preservation

Review: Arithmetic Expression - Syntax

Design Principles of Programming Languages, Spring 2025 3

Review: Arithmetic Expression - Evaluation Rules

Design Principles of Programming Languages, Spring 2025 4

Evaluation Results

• Either values

• Or stuckness

─ e.g, succ 𝑓𝑎𝑙𝑠𝑒

Design Principles of Programming Languages, Spring 2025 5

Types of Terms

• Can we tell, without actually evaluating a term, that the term evaluation will

not get stuck?

• If we can distinguish two types of terms:

─ Nat: terms whose results will be a numeric value

─ Bool: terms whose results will be a Boolean value

• “a term t has type T” means that

t “obviously” (statically) evaluates to a value of T

─ if true then false else true has type Bool

─ pred (succ (pred (succ 0))) has type Nat

Design Principles of Programming Languages, Spring 2025 6

The Typing Relation

t : T

Types

• Values (in arithmetic expression) have two possible “shapes”

either booleans or numbers.

Design Principles of Programming Languages, Spring 2025 8

• metavariables S, T, U, etc. will be used to range over types

Typing Rules

Design Principles of Programming Languages, Spring 2025 9

Typing Relation: Formal Definition

• Definition:

the typing relation for arithmetic expressions is the smallest binary

relation between terms and types satisfying all instances of the

typing rules.

• A term t is typable (or well typed) if there is some T such that t : T.

Design Principles of Programming Languages, Spring 2025 10

Typing Derivation

• Every pair (t, T) in the typing relation can be justified by a derivation

tree built from instances of the inference rules.

• Proofs of properties about the typing relation often proceed by

induction on typing derivations.

─ Statements are formal assertions about the typing of programs.

─ Typing rules are implications between statements.

─ Derivations are deductions based on typing rules.
Design Principles of Programming Languages, Spring 2025 11

Imprecision of Typing

• Like other static program analyses, type systems are generally

imprecise: they do not predict exactly what kind of value will be

returned by every program, but just a conservative (safe)

approximation.

• Using this rule, we cannot assign a type to

even though this term will certainly evaluate to a number

Design Principles of Programming Languages, Spring 2025 12

Properties of

The Typing Relation

Inversion Lemma (Generation Lemma)

• Given a valid typing statement, it shows

─ how a proof of this statement could have been generated;

─ a recursive algorithm for calculating the types of terms.

Design Principles of Programming Languages, Spring 2025 14

Typechecking Algorithm

Design Principles of Programming Languages, Spring 2025 15

generation lemma

Canonical Forms

• Lemma:

Design Principles of Programming Languages, Spring 2025 16

• Proof :

For part 1, if v is true or false, the result is immediate. But v cannot be 0 or succ nv,

since the inversion lemma tells us that v would then have type Nat, not Bool.

Part 2 is similar.

Uniqueness of Types

• Theorem [Uniqueness of Types]:

Each term t has at most one type. i.e.,

if t is typable, then its type is unique.

• Note: we may have a type system where a term may have many

types, later.

Design Principles of Programming Languages, Spring 2025 17

Safety

= Progress + Preservation

Safety (Soundness)

• By safety, it means well-typed terms do not “go wrong”.

• go wrong means reaching a “stuck state” that is not a final value but

where the evaluation rules do not tell what to do next.

Design Principles of Programming Languages, Spring 2025 19

Safety = Progress + Preservation

Well-typed terms do not get stuck

• Progress: A well-typed term is not stuck (either it is a value or it can take a

step according to the evaluation rules).

• Preservation: If a well-typed term takes a step of evaluation, then the

resulting term is also well typed.

Design Principles of Programming Languages, Spring 2025 20

Progress

Theorem [Progress]: Suppose t is a well-typed term (that is, t : T for some
T), then either t is a value or else there is some t′ with t ⟶ t′.

Proof: By induction on a derivation of t : T.

─ case T-True: true : Bool OK?

─ case T-False, T-Zero are immediate, since t in these cases is a value.

─ case T-If: t = if t1 then t2 else t3
t1 : Bool, t2 : T, t3 : T

By the induction hypothesis, either t1 is a value or there is some t1′ such that t1
⟶ t1′.

If t1 is a value, then the canonical forms lemma tells us that it must be either true

or false, in which case either E-IFTrue or E-IFFalse applies to t.

On the other hand, if t1 ⟶ t1′, then, by E-IF, t1 ⟶ if t1′ then t2 else t3 .
Design Principles of Programming Languages, Spring 2025 21

Progress

Theorem [Progress]: Suppose t is a well-typed term (that is, t : T for

some T), then either t is a value or else there is some t′ with t ⟶ t′.

Proof: By induction on a derivation of t : T.

─ The cases for rules T-Zero, T-Succ, T-Pred, and T-IsZero are similar.

Design Principles of Programming Languages, Spring 2025 22

Preservation

Theorem [Preservation]: If t : T and t ⟶ t′, then t′ : T.

Proof: By induction on a derivation of t : T.

Each step of the induction assumes that the desired property holds for all

sub-derivations and proceed by case analysis on the final rule in the

derivation.

─ case T-IF: t = if t1 then t2 else t3 t1 : Bool, t2 : T, t3 : T

There are three evaluation rules by which and t ⟶ t′ can be derived:

E-IFTrue, E-IFFalse, and E-IF. Consider each case separately.

− Subcase E-IFTrue: t1 = true t′ = t2

Immediate, by the assumption t2 : T.

Subcase E-IFFalse: similar.
Design Principles of Programming Languages, Spring 2025 23

Preservation

Theorem [Preservation]: If t : T and t ⟶ t′, then t′ : T.

Proof: By induction on a derivation of t : T. Each step of the induction

assumes that the desired property holds for all sub-derivations and proceed

by case analysis on the final rule in the derivation.

─ case T-IF: t = if t1 then t2 else t3 t1 : Bool, t2 : T, t3 : T

There are three evaluation rules by which and t ⟶ t′ can be derived: E-IFTrue,

E-IFFalse, and E-IF. Consider each case separately.

− Subcase E-IF : t1 ⟶ t1′, t′ = if t1′ then t2 else t3

Applying the IH to the subderivation of t1 : Bool yields t1′ : Bool. Combining

this with the assumptions that, t2 : T, and t3 : T, we can apply rule T-IF to

conclude that if t1′ then t2 else t3 : T , that is, t′ : T
Design Principles of Programming Languages, Spring 2025 24

Preservation

Theorem [Preservation]:

If t : T and t ⟶ t′, then t′ : T.

The preservation theorem is often called subject reduction property

(or subject evaluation property)

Design Principles of Programming Languages, Spring 2025 25

Homework

• Read and digest Chapter 8.

• Do Exercises 8.3.7

Design Principles of Programming Languages, Spring 2025 26

