

编程语言的设计原理 Design Principles of Programming Languages

Haiyan Zhao, Di Wang 赵海燕, 王迪

Peking University, Spring Term 2025

Chapter 9: Simply Typed Lambda-Calculus

Function Types

The Typing Relation

Properties of Typing

The Curry-Howard Correspondence

Erasure and Typability

The simply typed lambda-calculus

- The system we are about to define is commonly called the simply typed lambda-calculus, λ_→, for short.
- Talking about λ_{\rightarrow} , we always begin with *some set of "base types*", unlike the *untyped lambda-calculus*, the "pure" form of λ_{\rightarrow} (with no primitive values or operations) is not very interesting
 - Strictly speaking, there are *many variants* of λ_{\rightarrow} , depending on the choice of base types.
 - For now, we'll work with a variant constructed over the booleans.

Untyped lambda-calculus with booleans


```
terms
                                           variable
\lambda x.t
                                           abstraction
                                          <u>application</u>
                                           constant true
true
                                           constant false
false
                                           conditional
if t then t else t
                                         values
                                           abstraction value
\lambdax.t
```

true

false

true value

false value

Function Types

- $T_1 \longrightarrow T_2$
 - classifying functions that expect arguments of type T1 and return results of type T2.
- \rightarrow : type constructor is *right-associative*, e.g., $T_1 \rightarrow T_2 \rightarrow T_3$ stands for $T_1 \rightarrow (T_2 \rightarrow T_3)$
- Let's consider Booleans with lambda calculus

$$\begin{array}{c} T ::= \\ \text{Bool} \\ T \longrightarrow T \end{array} \hspace{3cm} \text{type of booleans} \\ \text{type of functions} \end{array}$$

- Examples
 - Bool \rightarrow Bool
 - (Bool \rightarrow Bool) \rightarrow (Bool \rightarrow Bool)

Typing rules

true: Bool (T-TRUE)

false: Bool (T-FALSE)

$$\frac{t_1: Bool}{if t_1 then t_2 else t_3: T}$$
 (T-IF)

$$\lambda x: T_1. t_2: T_1 \rightarrow T_2$$
 (T-ABS)

Typing rules

true : Bool (T-TRUE)

false : Bool (T-FALSE)

$$\frac{t_1: Bool}{if t_1 then t_2 else t_3: T}$$
 (T-IF)

$$\frac{???}{\lambda x: T_1. t_2: T_1 \longrightarrow T_2}$$
 (T-A_{BS})

Typing context

- Γ is a sequence of variables and their types, and the "," operator extends Γ by adding a new binding on the right.
 - The empty context is sometimes written Ø; but usually we just omit it by writing ⊢ t: T for "The closed term t has type T under the empty set of assumptions."
- To avoid confusion between the new binding and any bindings that may already appear in Γ, we require that the name x be chosen so that it is distinct from the variables bound by Γ
 - variables bound by λ -abstractions may be renamed whenever convenient
- Γ can thus be thought of as a finite function from variables to their types.
 - Following this intuition, we write $dom(\Gamma)$ for the set of variables bound by Γ .

What is the relation between these two statements?

```
t : T
⊢ t : T
```

these two relations are completely different things.

- for the simple language of numbers and booleans, typing is a binary relation between terms and types (t:T). We are dealing with several different small programming languages, each with its own typing relation (between terms in that language and types in that language)
- for λ_→, typing is a *ternary relation* between *contexts*, *terms*, and *types* (Γ ⊢ t : T, ⊢ t : T if Γ = Ø)

t ::=

X λx:T.t tt variable abstraction application

terms:

 $v ::= \lambda x : T . t$

values: abstraction value

T ::= T→T

types: type of functions

 Γ ::= contexts empty context Γ , x:T term variable binding

Assume: all variables in Γ are different via renaming/internal

Evaluation

 $t \longrightarrow t^\prime$

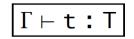
$$\frac{\mathsf{t}_1 \longrightarrow \mathsf{t}_1'}{\mathsf{t}_1 \; \mathsf{t}_2 \longrightarrow \mathsf{t}_1' \; \mathsf{t}_2}$$

$$\frac{\mathsf{t}_2 \longrightarrow \mathsf{t}_2'}{\mathsf{v}_1 \; \mathsf{t}_2 \longrightarrow \mathsf{v}_1 \; \mathsf{t}_2'}$$

$$(E-APP2)$$

$$(\lambda x : T_{11} . t_{12}) v_2 \rightarrow [x \mapsto v_2] t_{12}$$
 (E-APPABS)

Typing



$$\frac{x\!:\!T\in\Gamma}{\Gamma\vdash x:T}$$

$$\frac{\Gamma, x: T_1 \vdash t_2: T_2}{\Gamma \vdash \lambda x: T_1.t_2: T_1 \rightarrow T_2}$$

$$\frac{\Gamma \vdash \mathsf{t}_1 : \mathsf{T}_{11} \rightarrow \mathsf{T}_{12} \qquad \Gamma \vdash \mathsf{t}_2 : \mathsf{T}_{11}}{\Gamma \vdash \mathsf{t}_1 \: \mathsf{t}_2 : \mathsf{T}_{12}}$$

(T-APP)

Type Derivation Tree

What derivations justify the following typing statement?

 \vdash (λ x: Bool. x) true : Bool

```
\frac{x:Bool \in x:Bool}{x:Bool \vdash x:Bool} \xrightarrow{T-VAR} \frac{x:Bool \vdash x:Bool}{T-ABS} \xrightarrow{T-TRUE} \frac{T-TRUE}{T-APP} 
\vdash (\lambda x:Bool.x) \text{ true : Bool}
```


Properties of Typing

Inversion Lemma

Uniqueness of Types

Canonical Forms

Safety: Progress + Preservation

Inversion Lemma

- 1. If $\Gamma \vdash \text{true} : R$, then R = Bool.
- 2. If $\Gamma \vdash \text{false} : R$, then R = Bool.
- 3. If $\Gamma \vdash \text{if } t_1 \text{ then } t_2 \text{ else } t_3 : R$, then $\Gamma \vdash t_1 : \text{Bool and } \Gamma \vdash t_2, t_3 : R$.
- 4. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$.
- 5. If $\Gamma \vdash \lambda x : T_1 \cdot t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- 6. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \rightarrow R$ and $\Gamma \vdash t_2 : T_{11}$.

Exercise: Is there any context Γ and type T such that $\Gamma \vdash x x : T$?

Canonical Forms

Lemma:

- 1. If v is a value of type Bool, then v is either true or false.
- 2. If v is a value of type $T_1 \rightarrow T_2$, then v has the form $\lambda x: T_1.t_2$.

Uniqueness of Types

• Theorem [Uniqueness of Types]:

In a *given typing context* Γ , a term t (with free variables all in the domain of Γ) has at most one type.

Moreover, there is just *one derivation* of this typing built from the *inference rules* that generate the typing relation.

Progress

• **Theorem** [Progress]:

Suppose t is a *closed, well-typed term,* then either t is a value or else there is some t' with $t \rightarrow t'$.

- Closed: No free variable
- Well-typed: ⊢ t : T for some T
- Proof: same steps as before...
 - inversion lemma for typing relation
 - canonical forms lemma
 - progress theorem

Progress

• **Theorem** [Progress]:

Suppose t is a *closed, well-typed term*. Then either t is a value or else there is some t' with $t \rightarrow t'$.

Proof: By induction on typing derivations.

- The cases for Boolean constants and conditions are the same as before.
- The variable case is trivial (cannot occur because t is closed).
- The abstraction case is immediate, since abstractions are values.
- The case for application, where $t = t_1 t_2$ with $t_1 : T_{11} \to T_{12}$ and $t_2 : T_{11}$. By the induction hypothesis, either t_1 is a value or else it can make a step of evaluation, and likewise t_2 .

If t₁ can take a step, then rule E-App1 applies to t.

If t₁ is a value and t₂ can take a step, then rule E-App2 applies.

Finally, if both t_1 and t_2 are values, then the canonical forms lemma tells us that t_1 has the form λx : T_{11} . t_{12} , and so rule E-AppAbs applies to t.

Preservation

• Substitution Lemma [Preservation of types under substitution]:

```
if \Gamma, x: S \vdash t: T and \Gamma \vdash s: S, then \Gamma \vdash [x \mapsto s] t: T.
```

Proof: By induction on derivation of the statement Γ, x: S ⊢ t : T proceed by cases on the possible shape of t.

• Theorem [Preservation]:

```
If \Gamma \vdash t: T and t \longrightarrow t', then \Gamma \vdash t':T.
```

Proof: By induction on typing derivations.

leaf as homework

The Curry-Howard Correspondence

A connection between logic and type theory

	Logic	PROGRAMMING LANGUAGES
	propositions	types
•	proposition $P \supset Q$	type P→Q
	proposition $P \wedge Q$	type $P \times Q$ (see §11.6)
Ĭ	proof of proposition P	term t of type P
	proposition P is provable	type P is inhabited (by some term)

Erasure and Typability

- Types are used during type checking, but do not need to appear in the compiled form of the program.
- Terms in λ_{\rightarrow} can be transformed to terms of the untyped lambda-calculus simply by erasing type annotations on lambda-abstractions.

```
erase(x) = x

erase(\lambda x: T_1. t_2) = \lambda x. erase(t_2)

erase(t_1 t_2) = erase(t_1) erase(t_2)
```

Erasure and Typability

Conversely, an untyped λ-term m is said to be typable if there is some term t in the simply typed λ-calculus, some type T, and some context Such that

erase(t) = m and
$$\Gamma \vdash t$$
: T

This process is called *type reconstruction* or *type inference*.

THEOREM:

- 1. If $t \to t'$ under the typed evaluation relation, then $erase(t) \to erase(t')$. untyped
- 2. If $erase(t) \rightarrow m'$ under the typed evaluation relation, then there is a simply typed term t' such that $t \rightarrow t'$ and erase(t') = m'.

Curry-Style vs. Church-Style

- Curry Style
 - Syntax → Semantics → Typing (Semantics is prior to typing)
 - Semantics is defined on untyped terms
 - Often used for *implicit* typed languages

- Church Style
 - Syntax → Typing → Semantics (typing is prior to semantic)
 - Semantics is defined only on well-typed terms
 - Often used for explicit typed languages

Homework

- Read through Chapter 9.
- Do Exercise 9.3.9.

THEOREM [PRESERVATION]: If $\Gamma \vdash t : T$ and $t \rightarrow t'$, then $\Gamma \vdash t' : T$.

Proof: EXERCISE [RECOMMENDED, $\star\star\star$]. The structure is very similar to the proof of the type preservation theorem for arithmetic expressions (8.3.3), except for the use of the substitution lemma.